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1. Introduction

The renormalization group (RG) based technique of “latti@ching” via block transforma-
tions relates physical quantities on different latticaghuis provides a method for computation of
a physical quantity at different lattice spacings (cougdin To apply it one needs to implement RG
block transformations on the approach to the Wilsonian Reaatized Trajectory (RT). This can be
done in various ways. One way is humerical implementatiothefRG blocking by Monte Carlo
RG (MCRG) techniques. This is the method that has mostly ised in the literature. Another
approach is to implement blocking by explicit RG recursietations that can, to varying degree,
be explicitly carried out by numerical-analytical meankislis the method followed here. Specif-
ically, we employ explicit RG recursion relations of the tpotial moving" type. These block
transformations (decimations) are of course approximatecén, in principle, be systematically
improved. They turn out to be surprisingly effective. In folowing we apply lattice matching
of these decimations to obtain critical couplings and gttensions for th&U(2) andSU(3) pure
gauge theories. A more detailed account has appeared in [1].

2. RG blocking recursions and lattice matching

RG blocking recursion§Ve start by assuming a general plaquette ackigfiJ,,n) on lattice
of spacingba given in terms of the character expansion of its exponential

exp(—Ap(Up, n) Z dj Fj(n) xj(Up) . (2.1)

The sum is over all inequivalent irreducible representetitabeled byj, with charactersy; of
dimensiond;. The action itself is, of course, completely specified bysaeofF;(n) coefficients,
and vice versa, and of the general form:

Ap(Up,n) z B, [Xi (Up) + X (Up )] (2.2)

with |; = 1 for self-conjugate antj = 2 for non—self—conjugate representations. (Btr(2), in
particular,l; =1 for all j.)

It is useful to define an effective couplimgy® characterizing a given action of the form (2.2):

g AN oy d*Ap(€™ )|
gm2 de2 0-0

Here {t} are theSU(N) generators aneh a unit vector. ((2.3) is of course independent of the
directionm). In the perturbative regime this reduces to the usual diefimof gauge coupling. In
the non-perturbative regime any definition of a ‘coupling’af course some scheme-dependent
choice. We adopt (2.3) to track the RG recursion flows; it @les an efficient parametrization of
the renormalized trajectory below.

The lattice block step”a — b"1a may now be formulated as a prescription for the character
expansion coefficients;(n+ 1) in terms of theF;(n)’s:

(2.3)

7(0-2) r

i(n+1) = /du [deFk ) Xk(U ] d—ljx,-*(U) : (2.4)
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To complete the prescription we must specify the renorratm parameterg, r. We take

{ = b|1-cd"? (2.5)
r=b [1— cg(”)z} (2.6)

with ¢ an adjustable decimation parameter to be tuned for opttiaizas explained below. It is
convenient to work with normalized coefficients= F; /Fp by factoring out the trivial representa-
tion coefficient in (2.1). Effective couplings (2.3) are@tonveniently computed directly in terms
of the {f;}.
RG flows and lattice matchinGonsider now a general lattice system described by an action

A(K) with set of couplingK = {K;}. Successive RG blockings by a scale fattgenerate a flow

in action spaceK — KM K@ — ... . KM — ... whereK™ = {K"} denotes the couplings
aftern blocking steps. If flows froniK andK’ reach the same point on RT afteandn’ steps, then

K3

FP

K K {K;}

Figure 1. Flows towards the RT from two different starting couplingandK’.
the corresponding lattice correlation lengthst’ and spacings, & are related as
E=p Mg g =pMa, (2.7)

To identify such pairs of couplings we need ascertain that afandn’ RG steps, respectively,
the same point is reached on the RT. This can be done in eittipavays: (i) show that the cor-
responding actions coincidé&(K (M) = A(K’(")). This requires that one obtain the blocked action
at each step; or (ii) show that the expectations of everyatpermeasured after performing the
corresponding number of blocking steps from the initial setions, agree. Either way, identifying
such pairgK, n), and(K’, ') is referred to as two-lattice matching [2].

If blockings are performed numerically by MCRG, the secorethnd appears easier to use.
Obtaining the blocked action can be difficult, whereas iosgible, at least in principle, to generate
a Boltzmann-weighted configuration ensemble for the bld&aion by instead blocking the con-
figurations of an ensemble generated from the original acfilhese can then be used to measure
observables [3]. In practice, of course, due to lattice kiméations, only a rather small number
of block steps is possible by MCRG, so getting close enoughdd=T is not guaranteed. As a
general observation, the location of the fixed point beiragkldefinition dependent, appropriate
fine-tuning of any decimation free parameters can be crimigchieving rapid approach in few
steps.
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Here we employ two-lattice matching with RG block transfations implemented by the
recursions (2.4) described above. They can be explicithiuaed to any desired accuracy on
lattices of any size, so no inherent limitations due to fisie arise. The blocked action resulting
after each RG step is explicitly obtained, so it can usedderéain approach to the RT and perform
two-lattice matching. The transformations contain oneapeater (cf. (2.5) - (2.6)), which should
be fixed for matching optimization.

A basic feature of our decimations is that, regardless ofctimce of the initial plaquette
action, a single step suffices to generate an action of the {@r2) generally containing a large
(infinite) set of representations. This is important as flavguich a large-dimensional interaction
space makes it possible to avoid getting stuck at (finiteedisional) lattice artifact boundaries.
Furthermore, MCRG construction of blocked actions [4] skdhat one-plaquette terms with a
large number of characters are the most relevant actionstesmlong-scale dynamics. This is
precisely the type of action resulting from our decimatjargl may be the reason for their apparent
efficacy in computing long-distance dynamics observabdesean below.

In the following the starting action for our decimatioms=£ 0) will always be taken to be the
fundamental representation Wilson action. (Other chaices as mixed actions containing several
representations can be treated in exactly the same way.¥iQsethat the flow under successive
decimations reaches a unique RT irrespective of such ae&htiiough of course the number of
steps needed to reach it depends on the initial point inmsiace. With the fundamental Wilson
action as the starting action the approach is found to beregrig as illustrated in Fig. 2.

0.15

0.0

Figure 2: Flow from theSU(2) fund. Wilson action with3 = 4 (green dots) anfi = 2.5 (red dots) showing
rapid approach to the RT. First three non-trivial (normedigexpansion coefficients shown.

The effective coupling (2.3) provides a good way to labehpoalong the RT. If, starting from
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some Wilson action coupling, aftern steps the poinB(”)(B) lies on the RT, subsequent RG steps
generate a sequence of poifit§tl), B("+2 ... hopping along the RT. With scale factor= 2, and
for all large and intermediate values@f", the effective beta function is varying slowly enough for
a linear interpolation to provide an excellent approximatio the RT points lying between pairs of
neighboring pointg(™, g1

The decimations become exact in fie— « limit. Computation of the step scaling function
(beta function) from the decimations in the weak couplingliag region reproduces the perturba-
tion theory prediction to within 2% 3%. We next use them to obtain critical couplings and string
tensions by lattice matching for ti8J(2) andSU(3) gauge theories.

3. Critical couplings and string couplings by two-lattice matching

3.1 Critical couplings

At physical temperatur& = 1/aN;, lattice with temporal exteri;, spacinga and lattice with

N7, & are related by:
Ne

a= N_;a' (3.1)
If after blockingn andr’ times, respectively, the two flows reach the same point ofiRihausing
(2.7) this implies
n—n' =log, (E—Z) ) (3.2)
So, atT = T, one has
B (Be(Np) = B (Be(N7)). (3.3)

This suggests the following simple matching procedure.
(i) Assumingp.(N;) known for oneN;, take

n = log,N; +m

n' = logyN; +m (3.4)
Integerm= 0,1, ... is chosen sm,n’ large enough to be on the RT. (If the so-chosemr/andn’
turn out to be non-integer, one perforfinsand[n] + 1 steps, wher@| is the nearest integer to the
chosem from below, and uses interpolation for the RT points in-ledw as mentioned above.)

(i) With n, " and B:(N;) given, solve (3.3) fo3:(N;). This means that the starting point of the
flow on theN; lattice is adjusted to satisfy (3.3).

3.2 Stringtensions (T =0)

A similar procedure allows one to obtain string tensions atahing. Assume that two RG
flows from starting Wilson action g8 and3; end up at the same RT point aftey andn; steps,
respectively. Then one has

B (Bo) = B™ (By) (3.5)
and

a1y/0 =b™ Mgy /o (3.6)
Supposeag/0 known. Choose large enough to be on the RT. Determimeso that (3.5) is
satisfied.a; /o is then obtained directly from (3.6).



Critical couplings from two-lattice matching of RG decinoats E. T. Tomboulis

3.3 Numerical results

It is important to maintain high accuracy in working with tgpansions (2.1) under blocking
iteration. ForSU(2) we typically use fifty group characters in the expansions)(2This implies
for, say,3 = 5 omitted higher character coefficierfis= F;/Fo, and accompanying bounds on the
series remainder, of the order of 1. For SU(3) we truncate (2.1) at charactejs= (p,q) with
p > 20,q > 20; this implies remainders gt= 10 of less than 102,

The scale factor is always taken to be= 2. The adjustable parameter in the decimation
recursions (2.4) - (2.6) is, which we set at = 0.10 in the case 08U(2) andc = 0.24 in the case
of SU(3). With no other parameters present, straightforward nurakevaluation of the recursion
relations can then be carried out.

We take one value gB:(N;) from MC data, which serves to fix the scale and apply the pro-
cedure above to obtain critical coupling values for othétides. Results foBU(2) are shown in
Table 1. Two sets of computgl values are shown in Table 1 (columns 1 and 2) corresponding to
two different choices of the MC data point (underlined easyi The table also shows comparison
with the values obtained by MC simulation [5] - [7] in each &gsolumn 3). The agreement is
very good - at the 2% 3% level. Results for critical couplings in tf#&J(3) gauge theory are
displayed in Table 2. Agreement with MC simulation data pagain very good, typically within
a few percent.

N; B B B(MC)
3 | 21875 | 21957 | 2.1768(30)
4 | 22909 | 22991 | 2.2991(02)
5 | 23600 | 2.3683 | 2.3726(45)
6
8

2.4175 | 2.4258 | 2.4265(30)
2.5097 | 25180 | 2.5104(02)
12| 2.6355 | 2.6440 | 2.6355(10)
16 | 2.7275 | 27361 | 2.7310(20)
32| 29487 | 2.9574

Table 1. Critical couplingsfc(Nr) for SU(2) computed from lattice matching of decimations. Column 1
and 2 show the values obtained for two different choices édimed entries) of the one data point taken
from MC data (see text). Column 3 shows the values from MC Kitians for comparison.

String tensions irBU(3) obtained by the method above are displayed in the same fonmat
Table 3. Very similar results are obtained 8J(2) [1]. Good agreement with MC data [7] - [9] is
again obtained in all cases.

Consideration of fermionic observables by similar RG remur methods is a rather more
demanding proposition. Some preliminary attempts arertegan [10].
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