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1. Introduction

Direct and indirect CP violation in kaon systems are being currently investigated by the RBC-
UKQCD with a framework of n f = 2+ 1 dynamical flavours of Domain-Wall. Exciting results
concerning direct CP violation obtained though simulations of the decay of a kaon into two pions
have been reported in [1, 2, 3]. Important progress has also been achieved concerning indirect CP
violation, and in particular our computation of the non-SM contributions to neutral kaon mixing
has been recently published in [4]. We summarise here our strategy and the current status of our
analysis. We also mention that other collaborations have also recently reported on similar studies
at this conference [5, 7, 6]

After performing an operator-product-expansion, neutral kaon mixing can described by a
generic ∆s = 2 Hamiltonian of the form

H∆s=2 =
5

∑
i=1

Ci(µ)O∆s=2
i (µ) , (1.1)

where µ is a renormalization scale. The Wilson coefficients Ci, which encode the short-distance
effects, depend on the new physics model under consideration. The long-distance effects are fac-
torised into the matrix elements of the four-quark operators O∆s=2

i given here in the so-called SUSY
basis1 [8]

O∆s=2
1 = (sαγµ(1− γ5)dα)(sβ γµ(1− γ5)dβ ) ,

O∆s=2
2 = (sα(1− γ5)dα)(sβ (1− γ5)dβ ),

O∆s=2
3 = (sα(1− γ5)dβ )(sβ (1− γ5)dα),

O∆s=2
4 = (sα(1− γ5)dα)(sβ (1+ γ5)dβ ),

O∆s=2
5 = (sα(1− γ5)dβ )(sβ (1+ γ5)dα). (1.2)

In the SM case (i = 1) it is conventional to introduce the kaon bag parameter BK , which measures
the deviation of the SM matrix element from its vacuum saturation approximation (VSA)

BK =
〈K̄0|O∆s=2

1 |K0〉
8
3 m2

K f 2
K

. (1.3)

Where the normalisation for the decay constant is such that fK− = 156.1MeV. Several normali-
sations for the BSM operators (i > 1) have been proposed in the literature, see for example [9], in
this work we follow [10] and define the ratios

RBSM
i =

[
f 2
K

m2
K

]
expt

[
m2

P

f 2
P

〈P̄|O∆s=2
i |P〉

〈P̄|O1|P〉

]
latt

, (1.4)

where P is a pseudo-scalar particle of mass mP and decay constant fP. The term [ ]latt is obtained
from our lattice simulations for different values of mP. For completeness we will also give the BSM
bag parametrisation, defined as (where N2,...,5 =

5
3 ,−

1
3 ,−2,−2

3 ) [11],

Bi = − 〈K̄0|O∆s=2
i |K0〉

Ni〈K̄0|s̄γ5d|0〉〈0|s̄γ5d|K0〉
, i = 2, . . . ,5. (1.5)

1We discard the parity odd operators since they are not relevant in the present case.
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Computation details

This computation is performed on 323× 64× 16 Iwasaki gauge configurations with an in-
verse lattice spacing a−1 = 2.28(3)GeV, corresponding to a ∼ 0.086fm 2. We have three differ-
ent values of the light sea quark mass amsea

light = 0.004,0.006,0.008 corresponding to unitary pion
masses of approximately 290,340 and 390 MeV respectively. The simulated strange sea quark
mass is amsea

strange = 0.03, which is close to its physical value 0.0273(7). For the main results
of this work, we consider only unitary light quarks, amvalence

light = amsea
light, whereas for the physical

strange we interpolate between the unitary (amvalence
strange = amsea

strange = 0.03) and the partially quenched
(amvalence

strange = 0.025) data.
The procedure for the evaluation of the two-point functions and of the three point function

is fairly standard (in particular, we have used Coulomb gauge fixed wall sources to obtain very
good statistical precision). We define the three point functions ci = 〈P̄(t f )O∆S=2

i (t)P̄(ti)〉 and from
the asymptotic Euclidean time behaviour of the ratios of three point-functions ci/c1 (we fit these
ratios to a constant in the interval t/a = [12,52] 3) we obtain the bare matrix elements of the four-
quark operators normalised by the SM one:

[
〈P̄|O∆S=2

i |P〉/〈P̄|O∆S=2
1 |P〉

]bare . In figure 1 (left), we
show the corresponding plateaux obtained for our lightest unitary kaon amsea

light = amvalence
light = 0.004,

amsea
strange = amvalence

strange = 0.03.
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Figure 1: Left: ratios of the bare three point functions from which we extract RBSM
i . Results are shown for

our lightest simulated unitary kaon.
Right: renormalization factors of the four-quark operators. At each value of the simulated momentum p,
we run to the scale of 3GeV and convert to MS. The remaining scale dependence can be imputed to the
truncation of the perturbative expansion. We show only the Z-factors allowed by chiral symmetry.

Renormalization

The four-quark operators given in eq. (1.2) mix under renormalization. With Domain-Wall
fermions, the renormalization pattern is the same as in the continuum (up to numerically irrelevant

2Note that this value was recently updated to a−1 = 2.31(4)GeV [12].
3From figure 1 we deduce that we have reached the asymptotic region in this range for each operator insertion.
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discretisation effects). The SM operator O∆s=2
1 belongs to a (27,1) irreducible representation of

SU(3)L× SU(3)R and renormalizes multiplicatively. The BSM operators fall into two categories:
O∆s=2

2 and O∆s=2
3 transform like (6,6) and mix together. Likewise O∆s=2

4 and O∆s=2
5 belong to (8,8)

and also mix.
We perform the renormalization of the four-quark operators O∆s=2

i non-perturbatively in the
RI-MOM scheme [13]. By using both momentum sources [14] and partially twisted boundary
conditions, we obtain smooth functions of the external momentum with very good statistical ac-
curacy 4. Although we have also performed this computation in a non-exceptional intermediate
scheme, we quote here the results obtained via the RI-MOM scheme because only in this case are
the conversion factors to MS (computed in continuum perturbation theory) available for the whole
set of operators. We choose to impose the renormalization conditions at µ = 3GeV, the conversion
between 3 and 2GeV can be found in the appendix.

We observe that the effects of chiral symmetry breaking are not completely negligible, even
at 3GeV [15]. Therefore we must assess a systematic error to the mixing of operators of different
chirality (see next section). We have checked that in a non-exceptional scheme this small chirally
forbidden mixing is strongly reduced and becomes numerically irrelevant at 3GeV [15, 18]. Thus
we conclude that this effect is a physical manifestation of the infrared behaviour of the exceptional
intermediate scheme. The results for the chirally allowed renormalization factors ZMS

i j (3GeV) are
shown in figure 1 (right). They relate the bare four-quark operators to the renormalized ones
through the usual relation (Zq is the renormalization factor of the quark wave function and can-
cels in the ratios)

O∆s=2,MS
i (3GeV) =

Zi j

Z2
q

MS
(3GeV)O∆s=2,bare

j . (1.6)

Physical results and error estimation

Once the bare ratios have been renormalized, we extrapolate them to the physical kaon mass.
The chiral functional form of the BSM operators are discussed for example in [19, 20, 5]. Since we
find that the RBSM’s exhibit a very mild quark mass dependence (see figure 2), we take the results
obtained by a simple Taylor expansion as our central values.

Our final results are the RBSM
i quoted in MS at 3GeV given in table 1. For completeness, we

also convert these to the BSM bag parameters, using eq. (1.5). We also note that, using the same
framework, the SM contribution is found to be B1 = BK = 0.517(4)stat in the MS scheme at 3GeV,
whereas a continuum value of 0.529(5)stat(19)syst was quoted in [21]. The difference comes from
the fact that a different intermediate scheme was used in [21] (such a difference is accounted for
in our estimation of the systematic errors). From the same reference, the discretisation effects for
BK on this lattice are seen to be of the order of 1.5%. Since we have only one lattice spacing for
the BSM ratios, we make the assumption that the discretisation errors are of the same size as those
affecting BK , and estimate a 1.5% error to all the different operators. This might appear like a crude
estimate, but this effect is expected to be sub-dominant compared to other sources of systematic
errors. The next systematic error (called “extr.”) represents the spread of the results obtained from

4More details about the computation of the renormalization factors can be found in [15, 16, 17]
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Figure 2: Renormalized BSM ratios RBSM
i in function of the bare valence quark mass. We show the three

unitary light quarks for both the unitary strange (upward blue triangles) and the partially quenched strange
(downward blue triangles), together with their extrapolations in the light sector (blue and red circles) and
their interpolation to the physical kaon mass (black squares).

different extrapolation strategies to the physical point. The systematic error associated with the
non-perturbative renormalization (NPR) has been estimated from the breaking of chiral symmetry.
The mixing of the (6, 6̄) with the (8,8) operators is forbidden by chiral symmetry, but is likely
to be enhanced by the exchange of light pseudo-scalar particles. As the matrix element of O∆s=2

4
is numerically large, this non-physical mixing has an effect on O∆s=2

2 and O∆s=2
3 of the order of

8−9%. This unwanted infrared effect is absent if a non-exceptional scheme is used. The last error
we quote (“PT”) arises from the matching between the intermediate RI-MOM scheme and MS,
which is performed at one-loop order in perturbation theory [22, 23] in the three-flavour theory.
The associated error is obtained by taking half the difference between the leading order and the
next to leading order result 5. We note that this error is one of the dominant ones in our budget, and
we expect this error to be reduced by an important factor if a non-exceptional scheme were used,
since the latter are known to converge faster in perturbation theory. We neglect the finite volume
effects which have been found to be small in [21], as one can expect from the value of mπL∼ 4 for
our lightest pion mass mπ ∼ 290MeV.

Conclusions

We have computed the electroweak matrix elements of the ∆s = 2 four-quark operators which
contribute to neutral kaon mixing beyond the SM. Our work improves on other studies by using
n f = 2+1 flavours of dynamical chiral fermions. We confirm the effect seen in a previous quenched
computation [10], where large enhancements of the non-standard matrix elements were observed.

5To obtain αs at 3GeV in the three-flavour theory, we start from αs(MZ) = 0.1184 [24], we use the four-loop
running [25, 26] to compute the scale evolution down to the charm mass, while changing the number of flavours when
crossing a threshold, and then run up to 3GeV in the three-flavour theory.
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i RBSM
i Bi stat. discr. extr. NPR PT total

2 −15.3(1.7) 0.43 (5) 1.3 1.5 4.0 9.4 4.7 11.3
3 5.4(0.6) 0.75 (9) 2.0 1.5 3.9 7.8 7.6 12.0
4 29.3(2.9) 0.69 (7) 1.3 1.5 4.1 3.0 8.2 9.8
5 6.6(0.9) 0.47 (6) 2.1 1.5 3.8 3.2 12.6 13.8

Table 1: Final results of this work: the first two columns show the ratios RBSM
i and the corresponding bag

parameters Bi in MS at 3GeV, together with their total error, combining systematics and statistics. In the
remaining columns, we give our error budget for the RBSM, detailing the contributions in percentage of the
different sources of systematics (see text for more details).

The errors quoted in this work are of the order of 10%. We note that the main limitation of this
study comes from the lack of matching factors between non-exceptional renormalization schemes
(such as SMOM) and MS. Once these factors are available, we expect to reach a precision better
than 5%. We also plan to utilise another lattice spacing in order to have a better handle on the
discretisation effects.

Appendix

We have computed the non-perturbative scale evolution of the RBSM’s between 3 and 2GeV,
and then converted the results to MS using one-loop perturbation theory [22, 23]:

UMS(2GeV,3GeV) =
1 0 0 0 0
0 0.87 0.02 0 0
0 0.09 1.09 0 0
0 0 0 0.86 −0.01
0 0 0 −0.03 0.98

 . (1.7)

Our conventions are such that

RBSM(2GeV) =UMS(2GeV,3GeV)RBSM(3GeV) . (1.8)
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