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We calculate the kaon semileptonic form factors in lattice QCD with three flavors of dynamical
overlap quarks. Gauge ensembles are generated at pion masses as low as 290 MeV and at a
strange quark mass near its physical value. We precisely calculate relevant meson correlators
using the all-to-all quark propagator. Twisted boundary conditions and the reweighting technique
are employed to vary the momentum transfer and the strange quark mass. We discuss the chiral
behavior of the form factors by comparing with chiral perturbation theory and experiments.

The 30 International Symposium on Lattice Field Theory - Lattice 2012,
June 24-29, 2012
Cairns, Australia

∗Speaker.
†E-mail: takashi.kaneko@kek.jp

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
1
1
1

Chiral behavior of kaon semileptonic form factors in lattice QCD with exact chiral symmetry T. Kaneko

1. Introduction

Precise determination of the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements provides
a stringent test of the Standard Model to search for new physics. One of the elements |Vus| can be
determined from the K→πlν decays through a theoretical calculation of the normalization of the
vector form factor f+(0), which parametrizes the K→ π matrix element

〈π(p′)|Vµ |K(p)〉 = (p+ p′)µ f+(q2)+(p− p′)µ f−(q2) (q2 = (p− p′)2). (1.1)

In this article, we report on our calculation of f+(0) in N f =2+1 lattice QCD within 1 % accuracy.
In order to demonstrate the reliability of this precise calculation, we also examine the consistency of
other quantities, such as f−(0) and the form factors’ shape, with chiral perturbation theory (ChPT)
and experiments.

2. Calculation of form factors

We employ the overlap quark action to exactly preserve chiral symmetry for a straightforward
comparison of f{+,−}(q2) with ChPT. Numerical simulations are accelerated by modifying the
Iwasaki gauge action [1] and by simulating the trivial topological sector [1, 2]. Effects of the
fixed topology are suppressed by the inverse of the lattice volume N3

s ×Nt [2]. We use our gauge
ensembles generated at a single lattice spacing a=0.112(1) fm, which is determined from the Ω

baryon mass, and at a strange quark mass ms =0.080, which is close to its physical value ms,phys =
0.081. We simulate four values of degenerate up and down quark masses mud = 0.015, 0.025,
0.035 and 0.050 that cover a range of the pion mass 290 – 540 MeV. At each mud , a lattice size of
163×48 or 243×48 is chosen to control finite volume effects by satisfying a condition MπL &4.
The statistics are 2,500 HMC trajectories at each combination of mud and ms.

We calculate the scalar form factor f0(q2) = f+(q2) + f−(q2)q2/(M2
K −M2

π) at q2 = q2
max =

(MK−Mπ)2, f+(q2) and ξ (q2)= f−(q2)/ f+(q2) at q2 < q2
max from the following ratios [3]

R =
CKπ

4 (∆t,∆t ′;0,0)CπK
4 (∆t,∆t ′;0,0)

CKK
4 (∆t,∆t ′;0,0)Cππ

4 (∆t,∆t ′;0,0)
−−−−−→
∆t,∆t ′→∞

(MK +Mπ)2

4MKMπ

f0(q2
max)

2, (2.1)

R̃ =
CKπ

4 (∆t,∆t ′;p,p′)CK(∆t,0)Cπ(∆t ′,0)
CKπ

4 (∆t,∆t ′;0,0)CK(∆t,p)Cπ(∆t ′,p′)
→
{

EK +E ′π
MK +Mπ

+
EK−E ′π
MK +Mπ

ξ (q2)
}

f+(q2)
f0(q2

max)
, (2.2)

Rk =
CKπ

k (∆t,∆t ′;p,p′)CKK
4 (∆t,∆t ′;p,p′)

CKπ
4 (∆t,∆t ′;p,p′)CKK

k (∆t,∆t ′;p,p′)
→ 2pk

(p+ p′)k

EK +E ′K
(EK−E ′π)ξ (q2)−EK−E ′π

, (2.3)

where E(′)
P (P = π or K) represents the meson energy with the spatial momentum p(′). Note that

these observables are sufficient to determine f{+,−,0}(q2) at simulated values of q2, except at q2
max,

where R̃ and Rk have no sensitivity to ξ (q2). Two- and three-point functions are defined as

CP(∆t,p) =
1

N3
s Nt

∑
x,t

∑
x′
〈OP(x′, t +∆t)O†

P(x, t)〉e−ip(x′−x), (2.4)

CPQ
µ (∆t,∆t ′;p,p′) =

1
N3

s Nt
∑
x,t

∑
x′′,x′
〈OQ(x′′, t +∆t +∆t ′)Vµ(x′, t +∆t)O†

P(x, t)〉

×e−ip′(x′′−x′)−ip(x′−x), (2.5)
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Figure 1: Left panel: Monte Carlo history of normalized reweighting factor w̃(m′s,ms) at our largest mud .
Four lines show data with different numbers of noise samples (Nr). Right panel: statistical fluctuation of
CKπ

4 and R̃ before (open symbols) and after (filled symbols) reweighting. θ (′) represents the twist angle used
to induce the initial (final) meson momentum p(′).

where O†
P(Q)(x, t) (P,Q = π or K) represents the meson interpolating operator ∑r φ(r)q̄(x+r, t)γ5q′(x, t)

with an exponential smearing function φ(r)=e−0.4|r|. We use the all-to-all propagator [4, 5] to re-
markably improve the statistical accuracy of the correlators and, hence, form factors [6, 7].

In order to precisely determine f+(0), we explore the most important kinematical region q2∼0
by using the twisted boundary conditions (TBCs) [8]

q(x+Ns k̂, t) = eiθ q(x, t), q̄(x+Ns k̂, t) = e−iθ q̄(x, t) (k = 1,2,3), (2.6)

where k̂ is a unit vector in the k-th direction. For simplicity, we use a common twist angle θ in
all three spatial directions and take four (three) values of θ (including θ = 0) to cover −0.1 .
q2[GeV2]≤q2

max on the 163×48 (243×48) lattice.

3. Reweighting

The strange quark mass dependence of the form factors is studied by simulating a different
value m′s = 0.060, which is about 25 MeV smaller than ms = 0.080. We employ the reweighting
technique in which an observable O at m′s is calculated on the gauge configurations at ms as

〈O〉m′s = 〈O w̃(m′s,ms)〉ms , w̃(m′s,ms) =
w(m′s,ms)
〈w(m′s,ms)〉ms

, w(m′s,ms) =
det[D(m′s)]
det[D(ms)]

, (3.1)

where 〈· · · 〉
m(′)

s
and D(m(′)

s ) represent the Monte Carlo average and the overlap-Dirac operator at

the strange quark mass m(′)
s , respectively. We consider decomposing the reweighting factor w

into contributions of low- and high-modes of D as w = wlow whigh. The low-mode contribution
wlow = ∏k λk(m′s)/∏k λk(ms) is exactly calculated by using 160 (240) low-lying eigenvalues λk

on 163×48 (243×48). A noisy estimator is employed for w2
high = (1/Nr)∑

Nr
r=1 exp[−(P̄ξr)†(Ω−

1)(P̄ξr)/2] with Ω=D(ms)†
{

D(m′s)
−1
}† D(m′s)

−1D(ms), where {ξ1, . . . ,ξNr} is a set of Gaussian
noise vectors, and P̄ projects them to the eigenspace spanned by the high-modes.
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The left panel of Fig. 1 shows the Monte Carlo history of the normalized reweighting factor
w̃, which appears in the expression of the observable in Eq. (3.1). With our simulation setup, w̃ has
small dependence on the number of the noise vectors Nr. From this observation, we set Nr =10 to
precisely calculate w̃ on each gauge configuration.

The right panel of Fig. 1 shows how reweighting affects the statistical accuracy of the correlator
CKπ

4 and the ratio R̃. The fluctuation of CKπ
4 is largely enhanced by w̃, which is typically in the

range of [0.5,2.0]. We observe, however, that the enhanced fluctuations are largely canceled in
the ratio R̃. Consequently, the statistical accuracies of the form factors are not largely impaired
by reweighting: typically . 1.0 % (20 %) for f{+,0}(q2)

(
ξ (q2)

)
before reweighting, and . 1.5 %

(30 %) after reweighting.

4. q2 dependence of form factors

Our results for f0(q2) at the smallest mud are plotted as a function of q2 in the left panel of
Fig. 2. We use TBCs to simulate small values of |q2|, where contributions of higher orders in q2

are small and our data are well described by any of the following parametrization forms

f0(q2) = f0(0)(1+ c1q2), f0(q2) = f0(0)(1+ c1q2 + c2q4), f0(q2) =
f0(0)

1−q2/M2
pole

. (4.1)

A different form f+(0)
{

1/(1−q2/M2
K∗)+ c1q2

}
with the K∗ pole plus a polynomial correction is

also tested for f+(q2). We confirm a good agreement among f+(0) and f0(0) obtained from these
parametrizations as shown in the right panel of Fig. 2. In this report, we employ a simultaneous fit
using the quadratic form for f0 and the form with the K∗ pole for f+ to determine the normalization
f+(0) and its slope f ′+(0). The uncertainty of this interpolation is estimated by using the different
parametrization forms and turns out to be similar to or smaller than the statistical error.
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Figure 2: Left panel: scalar form factor f0(q2) at our smallest mud as a function of q2. We plot interpola-
tions listed in Eq. (4.1) together with f0(0) determined from the quadratic parametrization (diamond). Our
result on a smaller lattice 163×48 is also plotted to examine finite volume effects (triangle). Right panel:
comparison of f+(0) (= f0(0)) obtained by using different parametrization forms.
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In the left panel of Fig. 2, we also plot a result of f0(q2) obtained on a smaller lattice 163×48.
The difference from 243×48 can be attributed to the conventional finite volume effect as well as
the fixed topology effect, but turns out to be insignificant (0.8 %, 2.1 σ ). The finite volume effect
remaining on the larger volume 243×48 is estimated as . 0.3 % by assuming the 1/N3

s Nt scaling
of the fixed topology effect and can be safely neglected in the following analysis.

5. Chiral extrapolation of f+(0)

There are two popular choices of the expansion parameter in ChPT: ξP = M2
P/(4πFπ)2 and

M2
P/(4πF0)2 (P = π,K,η), where F0 is the decay constant in the SU(3) chiral limit. The latter

choice largely enhances the chiral corrections in f+(0) [7] and leads to worse convergences in the
expansions of MP and fP [9]. We therefore use the former and denote the chiral expansion as
f+(0)=1+ f2 +∆ f , where f2 and ∆ f are O(ξP) and higher order contributions, respectively.

The Ademollo-Gatto theorem f+(0)−1∝(ms−mud)2 [10] guarantees that f2 [11]

f2 =
3
2

(HKπ +HKη) , HPQ =−ξP +ξQ

8

(
1+

2ξPξQ

ξ 2
P−ξ 2

Q
ln
[

ξQ

ξP

])
(5.1)

is written in terms of physical observables ξ{π,K,η} and does not contain low-energy constants
(LECs) in the ChPT Lagrangian. The chiral expansion of f+(0) is then nothing but the parametriza-
tion of ∆ f . In the left panel of Fig. 3, we examine the quark mass dependence of ∆ f divided by
(M2

K −M2
π)2 which is motivated by the Ademollo-Gatto theorem. The mild dependence suggests

that our data can be described by a simple constant fit ∆ f /(M2
K−M2

π)2 = c4 which gives rise to the
O(ξ 2

P) analytic term in f+(0). We also confirm that the chiral extrapolation of ∆ f /(M2
K −M2

π)2 is
not largely modified by including the following O(ξ 2

P) logarithmic and O(ξ 3
P) analytic corrections

∆ f /(M2
K−M2

π)2− c4 = c′4,π log[ξπ ], or c′′4,π log2[ξπ ], or c6,πξπ , or c6,πξπ + c6,KξK . (5.2)

In this report, we employ a parametrization ∆ f /(M2
K −M2

π) = c4 + c6,πξπ , all parameters of
which are determined reasonably well with an acceptable value of χ2/d.o.f.∼1.6. The systematic
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Figure 3: Chiral extrapolations of ∆ f /(M2
K−M2

π)2 (left panel) and f+(0) (right panel). Circles and squares
show data at different values of ms. In the right panel, we also plot f+(0) from recent calculations in
N f =2+1 [12] and N f =2 [13] QCD.
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uncertainty of this extrapolation is estimated as the largest deviation in f+(0) among the different
parametrization forms discussed above. The discretization error in the SU(3) breaking effect f2+
∆ f is estimated by an order counting O((aΛQCD)2) with ΛQCD≈500. We then obtain

f+(0) = 0.959(6)stat(4)chiral(3)a6=0, |Vus|= 0.2256(19)theory+exp′t, (5.3)

where we use |Vus f+(0)|= 0.2163(5) determined from the K→πlν decay rates [14]. Note that
previous calculations in N f =2+1 [12] and N f =2 [13] QCD are consistent with our result.

6. Comparison of 〈r2〉Kπ
V and ξ (0) with ChPT and experiments

In order to demonstrate the reliability of the 1 % calculation of f+(0), we compare our data
of the normalized slope 〈r2〉Kπ

V =6 f ′+(0)/ f+(0) and ξ (0) with ChPT and experiments. In contrast
to f+(0), the Ademollo-Gatto theorem is not applicable to these quantities, and unknown LECs
appear already in their leading chiral corrections. For 〈r2〉Kπ

V , we parametrize its higher order
contributions by simple analytic terms to avoid unstable chiral extrapolations

〈r2〉Kπ
V = 12Lr

9/F2
π + “chiral logarithms”+dπξπ +dKξK . (6.1)

We refer to Ref. [11] for the explicit expression of the chiral logarithmic terms. The left panel
of Fig. 4 shows that this form describes our data reasonably well. It also suggests that the chiral
behavior of 〈r2〉Kπ

V is significantly modified in our simulation region 290 . Mπ [MeV] . 540 by
the O(ξP) contribution at two-loop order in ChPT. We note that significant two-loop corrections
have been also observed in our studies of the pion and kaon charge radii [5, 6]. We confirm a
good agreement of the extrapolated value of 〈r2〉Kπ

V with experiment [15]. Our fit result Lr
9×103 =

4.3(0.6)stat(0.3)sys is also consistent with the phenomenological estimate 5.9(0.4) [16].
In this report, we parametrize the quark mass dependence of ξ (0) by a simple linear form

ξ (0) = d0 + d1(M2
K −M2

π), which is motivated from the ChPT expression of the leading analytic
terms ∝ M2

K−M2
π [11]. This form describes our data reasonably well as seen in the right panel of

Fig. 4. We obtain d0 =−0.022(25) confirming that ξ (0) vanishes in the SU(3) symmetric limit, as
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Figure 4: Chiral extrapolation of 〈r2〉Kπ
V (left panel) and ξ (0) (right panel). In both panels, the diamonds

represent our result extrapolated to the physical quark masses mud and ms, which should be compared to the
experimental values plotted by the stars.
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expected. The extrapolation to the physical point yields ξ (0)=−0.095(5) which is consistent with
the experimental value −0.125(23) [17].

7. Summary

In this article, we report on our calculation of the kaon semileptonic form factors. The nor-
malization f+(0) is calculated within 1 % accuracy by utilizing the all-to-all quark propagator,
reweighting and TBCs. The reliability of this precise calculation is checked by confirming a good
consistency of 〈r2〉Kπ

V and ξ (0) with experimental results.
Since we observe significant two-loop contributions in the chiral expansions of f+(0) and

〈r2〉Kπ
V , it is interesting to apply two-loop ChPT formulae to our data. To this end, our use of

the overlap quark action is advantageous, since exact chiral symmetry enables us to use the two-
loop formulae in the continuum limit without any additional terms at finite lattice spacings. This
provides a theoretically clean comparison between lattice QCD and ChPT at the higher order.

Numerical simulations are performed on Hitachi SR11000 and IBM System Blue Gene Solu-
tion at High Energy Accelerator Research Organization (KEK) under a support of its Large Scale
Simulation Program (No. 11-05) as well as on Hitachi SR16000 at YITP in Kyoto University. This
work is supported in part by the Grants-in-Aid for Scientific Research (No. 21674002, 21684013),
the Grant-in-Aid for Scientific Research on Innovative Areas (No. 2004: 20105001, 20105002,
20105003, 20105005, 23105710), and SPIRE (Strategic Program for Innovative Research).
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