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We report progress on calculating the KL-KS mass difference in lattice QCD. The calculation is

performed on a 2+1 flavor, domain wall fermion, 163 ×32 ensemble with a 421 MeV pion mass.

We include only current-current operators and drop all disconnected and double penguin diagrams

in the calculation. The calculation is made finite through the GIM mechanism by introducing a

valence charm quark. The long distance effects are discussed separately for each of the two parity

channels. While we find a clear long distance contribution from the parity odd channel, the signal

to noise ratio in the parity even channel is exponentially decreasing and the two-pion state can

be seen in only a subclass of amplitudes. We obtain the mass difference ∆MK in a range from

5.12(24)×10−12 to 9.31(66)×10−12 MeV for kaon masses between 563 and 839 MeV.
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1. Introduction

The KL-KS mass difference is believed to arise from K0-K
0

mixing via second-order weak

interaction. It is highly suppressed and very sensitive to the V −A structure of the weak vertex

in the standard model. We proposed a lattice method to compute this mass difference, including

both short and long distance effects. Our previous preliminary work on 163 ×16×32 domain wall

fermion (DWF) lattice shows promising results [1]. In this work, we extend our calculation to

include all operators and various kaon masses on the same lattice. The short distance and long

distance contributions will be discussed separately. Then we will discuss the operator mixing and

renormalization. Finally, the resulting mass differences will be given in physical units.

2. Setup of this calculation

The first-order, ∆S = 1 effective weak Hamiltonian including four flavors can be written as:

HW =
GF√

2
∑

q,q′=u,c

VqdV ∗
q′s(C1Q

qq′

1 +C2Q
qq′

2 ), (2.1)

where the Vqq′ are CKM matrix elements, Ci are Wilson coefficients and we only include the

current-current operators, which are defined as:

Q
qq′
1 = (s̄iq

′
j)V−A(q̄ jdi)V−A

Q
qq′
2 = (s̄iq

′
i)V−A(q̄ jd j)V−A.

(2.2)

We neglect the penguin operators in the effective Hamiltonian. This is a good approximation since

these operators are suppressed by a factor τ = |VtdV ∗
ts|/|VudV ∗

us|= 0.0016 in a four flavor theory.

The essential part of this work is to calculate the four-point correlator:

G(t f , t2, t1, ti) = 〈0|T
{

K0(t f )HW (t2)HW (t1)K0(ti)
}

|0〉

= N2
Ke−MK(t f−ti)∑

n

〈K0|HW |n〉〈n|HW |K0〉e−(En−MK)|t2−t1|,
(2.3)

where NK is the normalization factor for the kaon interpolating operator, t f − tk and tk − ti should

be sufficiently large to project onto the kaon state. SInce we fix ti and t f in the simulation, this

correlator depends only on the time separation between the two Hamiltonian |t2 − t1|. We will

refer to this quantity as the unintegrated correlator, which receives contributions from all possible

intermediate states.

We can integrate the times t1 and t2 in the unintegrated correlator over a time interval [ta, tb]

and obtain:

A =
1

2

tb

∑
t2=ta

tb

∑
t1=ta

〈0|T
{

K0(t f )HW (t2)HW (t1)K0(ti)
}

|0〉

=N2
Ke−MK(t f−ti)

{

∑
n 6=n0

〈K0|HW |n〉〈n|HW |K0〉
MK −En

(

−T +
e(MK−En)T −1

MK −En

)

+
1

2
〈K0|HW |n0〉〈n0|HW |K0〉T 2

}

,

(2.4)
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where T = tb − ta + 1 is the integration range, |n0〉 is a state degenerate with kaon if such a state

exists. We call this amplitude the integrated correlator. For sufficiently large T , the exponentially

decreasing terms become negligible. After the subtraction of the exponentially increasing term and

a possible quadratic term, the remain term is a linear function of integration range T . The coefficient

of the linear term gives the finite-volume approximation to ∆MK up to some normalization factors.

More details about this method can be found in Ref. [1].

There are four types of contractions contributing to this correlator as shown in Fig. 1. We

only include type 1 and type 2 diagrams in this simulation. This simulation is performed on a

N f = 2+1 flavors, 163×32×16 lattice with domain wall fermions, the Iwasaki action, a−1 = 1.73

Gev, mπ = 421 MeV and mK = 563 MeV. We use 800 configurations, each separated by 10 time

units. Two Coulomb gauge wall sources are located at ti = 0 and t f = 27. The two weak operators

are introduced in the interval 5 ≤ t1, t2 ≤ 22. We calculate the four-point function defined in Eq. 2.3

for all possible choices of t1 and t2. The mass difference is obtained from the slope of the integrated

correlator plot, and the fitting range is T ∈ [9,18].
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s d
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Type 1 Type 2

d
s

s d
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s d
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Figure 1: Four types of diagrams that contribute to K0-K
0

mixing. Only type one and type two diagrams

are included in this work. The black dots represent a γ5 matrix insertion for kaons. the dark circles stand for

the four-fermion operators.

3. Short distance contribution

If there is no charm quark in this calculation, the short distance part of ∆MK will receive power

divergent contributions from heavy intermediate states. Such contributions are unphysical lattice

artifacts. To investigate the divergent character of this short distance contribution in detail, we

introduce an artificial position-space cutoff radius R. When we perform the double integration, we

require the space-time separation between the positions of the two operators to be larger than or

equal to this cutoff radius :
√

(t2 − t1)2 +(~x2 −~x1)2 ≥ R. (3.1)

We can plot the mass difference ∆MK as a function of this cutoff radius R. We use 600 configu-

rations separated by 10 time units, with mπ = 412 MeV and mK = 563 MeV. We only include the

3
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operator combination Q1 ·Q1, i.e. both four quark operators are Q1 operators. In Fig. 2, we show

the cutoff dependence of mass difference. The blue curve is a naive uncorrelated two parameter fit:

∆M11
K (R) =

b

R2
+ c, (3.2)

where b and c are constants. The fitting results shows a power divergent short distance contribution.
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Figure 2: The mass difference for different values of the cutoff radius R. The blue curve is a naive two-

parameter fit to a 1/R2 behavior.

We introduce a valence charm quark to control such unphysical short distance effects. In our

earlier work [1], we found that GIM mechanism substantially reduce the short distance contribu-

tion. One might expect that the GIM cancellation would leave us a logarithmic divergence of form

ln(mca) on lattice. However, because of the V −A structure of the weak vertices, the GIM cancel-

lation is complete, leaving only convergent pieces. Thus if the lattice artifacts associated with large

mca and the quenched treatment of the charm quark can be neglected, our four flavors calculation

should capture all important aspects of ∆MK .

In Ref. [1], we were unaware of the absence of a ln(mca) term in the lattice calculation with

valence charm and we performed an explicit Rome-Southampton style, RI/SMOM subtraction to

remove it. In fact, the subtraction term reported in Ref. [1], performed at a scale µ = 2 GeV, was

zero within errors, consistent with the absence of a true short distance contribution to ∆MK .

4. Long distance contribution

In this section we will discuss the long distance contribution to our calculation of ∆MK . The

integrated correlator receives contribution from both short and long distances. Therefore, in this

section we examine the unintegrated correlators in Eq .2.3, which depends only on the time separa-

tion T of two effective Hamiltonians. If the separation T is sufficiently large, the contribution from

the lightest intermediate state will dominate the signal. There is no vacuum state since we don’t

include disconnected diagrams, so the two lightest states are π0 and π-π states. These two states

have different parity. We can examine them separately by separating each left-left ∆S = 1 operator

into parity conserving and violating parts. The results presented in this section are for an average

4
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over 800 configurations separated by 10 time units, with a valence light quark mass ml = 421 MeV

and various strange quark masses.

We will discuss the parity-odd channel first. For this case, both weak operators are parity

conserving which implies that all intermediate states have odd parity. In Fig.3, we plot the uninte-

grated correlator from operator combination Q1 ·Q1 and the resulting effective mass for the choice

of kaon mass MK = 0.4848(8). In the plots of the unintegrated correlators we show both original

results and the results after the subtraction of the π0 contribution. This subtraction is done using

the 〈π0|Qi|K0〉 matrix element from a three point correlator calculation. Since only the π0 term

should be present for large time separations, we expect that the results after subtraction should

be consistent with zero for large TH . In the effective mass plots, we calculate the effective mass

MX −MK from the unintegrated correlators, here MX is the mass of the intermediate state. For this

parity conserving case, the lightest state is the pion. The “exact” Mπ −MK mass obtained from the

two point correlator calculation is shown in the plots as a blue horizontal line which agrees well

with the computed effective mass.

Next we will examine the case where parity violating operators appear at both vertices, so the

intermediate states can only be parity even. In Fig. 4, we present the unintegrated correlators for

the three different operator combinations evaluated at a kaon mass MK = 839 MeV. This kaon mass

is very close to the energy of two pions at rest, so we expect to find a non-zero plateau at large time

separation TH . However, our results are extremely noisy at long distance and we are not able to

identify such a plateau. The large noise can be explained as follows. Although the signal should

come from two-pion intermediate states, we will also have noise, whose large time behavior is like

that of a single pion intermediate state. Then the signal to noise ratio will fall exponentially for

large time separation. The situation here is very similar to what is found for disconnected diagrams.

We also expect that most of the noise comes from type 1 diagrams, shown in Fig. 1, because the

topology of type 2 diagrams does not allow a single-pion contribution to their noise. This argument

is confirmed by plotting the results from type 2 contractions only. If we analyze the type 2 diagrams

alone, and fit the resulting intermediate state masses the results agree with the two-pion mass very

well, as seen in the lower right panel of Fig. 4.
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Figure 3: A plot of the unintegrated correlator and resulting effective mass for the parity-conserving operator

combination Q1 ·Q1 and a kaon mass K = 839 MeV. In the left-hand plot, the red diamonds and blue squares

show the result before and after subtraction of the π0 term. In the right-hand plot, the red diamonds are

effective masses obtained from the unintegrated correlator. The blue horizontal line shows the “exact” value

of Mπ −MK obtained from the two point correlator calculation.
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Figure 4: The unintegrated correlators for different, parity-violating operator combinations at a kaon mass

MK = 839 MeV. We plot both the full results and the results from type 2 diagrams only. The last plot is the

fitted intermediate state mass (red diamonds) and the sum of that mass and the kaon mass (blue squares) for

all choices of kaon masses. The results shown in this last plot are obtained from fitting the type 2 diagrams

alone.

5. The KL-KS mass difference

In order to calculate the physical KL −KS mass difference, we must connect our four-quark

lattice operators with the physical ∆S = 1 effective weak Hamiltonian HW . Thus, we must deter-

mine the Wilson coefficients and normalize the lattice operators in the same scheme in which the

Wilson coefficients are computed. This procedure can be summarized by :

HW =
GF√

2
∑

q,q′=u,c

VqdV ∗
q′s ∑

i=1,2

CMS
i (µ)(1+∆rRI→MS)i j(Z

lat→RI) jkQ
qq′,lat
k (µ)

=
GF√

2
∑

q,q′=u,c

VqdV ∗
q′s ∑

i=1,2

Clat
i (µ)Qqq′,lat

i (µ).

(5.1)

All the operator renormalization and mixing are performed at a scale µ = 2.15 GeV. The Wil-

son coefficients CMS
i (µ) are calculated following the formulas in Ref. [2]. The matching matrix

∆rRI→MS is provided by Christoph Lehner. The lattice operator mixing matrix is obtain from a

non-perturbative renormalization calculation [3]. Combining all three ingredients we can obtain

the coefficients Clat
i for the bare lattice operators. These results are given in Tab. 1.

6
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Table 1: The Wilson coefficients, the RI → MS matching matrix, the non-perturbative lat → RI operator

renormalization matrix and their final product, all at a scale µ = 2.15 GeV shown in columns one through

four respectively.

CMS
1 CMS

2 ∆r11 = ∆r22 ∆r12 = ∆r21 Z11 = Z22 Z12 = Z21 Clat
1 Clat

2

-0.2976 1.1391 -6.562×10−2 7.521×10−3 0.5725 -0.01412 -0.1693 0.6119

We now combine all these ingredients and determine the mass difference ∆MK in physical

units. We present results for four kaon masses ranging from 563 MeV to 839 MeV. In the heavy

kaon cases, especially the 839 MeV kaon, the two-pion intermediate state will be close to being

degenerate with the kaon. Thus,we should remove the T 2 term in Equation 2.4 arising from this

degenerate π −π state. However, we are not able to identify the two-pion intermediate state within

errors. This implies that this on-shell, two-pion intermediate state contributes only a small part to

the mass difference in our calculation. Therefore, for all the results presented in this section, we

neglect possible T 2 contamination from a degenerate two-pion intermediate state.

Table 2: The contribution of the three operator products evaluated here to the mass difference ∆MK for four

different choices of the kaon mass. The final column gives the complete long and short distance contribution

to ∆MK expressed in physical units.

MK (MeV) ∆M11
K ∆M12

K ∆M22
K ∆MK (×10−12 MeV)

563 6.42(15) -2.77(16) 1.56(9) 5.12(24)

707 8.94(23) -3.16(27) 2.26(14) 6.92(39)

775 10.65(29) -3.49(35) 2.67(18) 8.08(51)

839 12.55(37) -3.84(46) 3.11(24) 9.31(66)

In summary, we perform a systematic study of the KL −KS mass difference calculation using

the method of lattice QCD. We only include part of the contractions and use a pion mass of 421

MeV. Our results range from 5.12(24)× 10−12 MeV to 9.31(66)× 10−12 MeV for kaon masses

between 563 MeV and 839 MeV, while the physical result is 3.48×10−12 MeV.

The author thank very much all my colleagues in the RBC and UKQCD collaborations for

valuable discussions and suggestions. Especially thanks to Prof. Norman Christ for detailed in-

structions and discussions.
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