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1. Introduction

In the Standard Model, CP-violation occurs due to a non-zero phasehe CKM matrix
that parameterises the mixing between quark flavours through the weakciiaar As a result
the low-energy effective Hamiltonian of the weak interactions and CP became&ommuting
operators. This manifests indirectly as a mixing of CP-eigenstates, e.g. K th&® andB® — BY
systems, and also directly in decays, as was first observed in the deCRyauld kaon states into
the CP-even two-pion state.

K — mr decays can occur via thl = 3/2 channel to an isospin-2 final state,elg™ —
et 1°, and also via the\l = 1/2 channel to an isospin-0 final state, e® — (" 1), and
KO — (m°m%),— (we include a subscript becauge m~ and 7°1° can also forml = 2 states).
The decay amplitudes are labelldgandA, respectively. Direct CP-violation manifests here as a
difference in the complex phases of the two amplitudes:
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wherew = ReA;/ReAy and & are the strong-rescattering phase shifts. The quastiparame-
terises the amount of direct CP-violation, and is highly sensitive to beyan&tidndard Model
sources of CP-violation. As a result there is a strong motivation for obtpiaiprecise first-
principles determination of this quantity within the Standard Model.

Non-perturbative strong interactions play an important role in these deftayexample they
give rise to a strong preference for the kaon to decay into the isospateOover the isospin-2 state
— the so-called\l = 1/2 rule — the mechanism for which is not yet fully understood. Lattice QCD
is currently the only method by which the strong dynamics can be studied frenpfinciples,
however measuring such hadronic decays on the lattice has only recentynb possible and
has required significant theoretical and technological advanceRBEB&UKQCD collaboration
have recently published [5, 6] the first realistic ab initio calculatiodpfrom theK* — 0
decay channel. Unfortunately the calculatiorAgfposes further challenges that must be overcome
before we can provide a complete first-principles calculatiogf .of

Below we discuss the difficulties in the measuremenfgfand present G-parity boundary
conditions as a solution to one such problem. We then detail their implementatioe tattibe
and present some of the more unusual aspects of calculations involving e present some
preliminary results showing that the boundary conditions have the dediestl @nd discuss fur-
ther difficulties that must be overcome before the technique can be apptieeldo— 1T decays.

2. Challengesin Measuring Ag and G-parity Boundary Conditions

One difficulty in measuring thAl = 1/2 amplitude is the presence of disconnected diagrams
in the rrr propagator that appear due to the fact that the 1=0 two-pion state, urdike2lstate, has
vacuum quantum numbers and can therefore be absorbed into thervaoduecreated at a later
time. The measurement of disconnected diagrams on the lattice is usually veyyrequiring
large statistics and many source positions for the quark propagatorsteereBortunately, using
advanced propagator measurement techniques such as all-modgirayerall-to-all propagators,
such calculations are now feasible. This is demonstrated in ref. [4], irwithecall-to-all technique
was used in calculating thil = 1/2 K — mrrdecay at zero momentum transfer on & @2 do-
main wall lattice with unphysical quark masses. Of course the larger-lattigsiqal calculations
we outline in the conclusions of this document will require considerably monegul machines
such as the IBM BlueGene/Q machines now available to RBC&UKQCD.

A more difficult challenge is that of conserving energy in the decay, widguires the two
pions to be moving away from each other in the kaon rest frame. As the maméntiscretised
by the finite lattice volume, careful tuning of the lattice size is necessary. E@atloulation oA,
we investigated several approaches, finding that the strongestsigmabtained using a stationary

(1.1)
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kaon in the lattice reference frame. The required non-zero momemittstate is an excited state of
the rrrr spectrum, hence the measurement of the phyKical rtrr decay requires the subtraction of
the much larger contribution from the unphysical decay to the zero momemtumadystate. This
can be avoided using antiperiodic boundary conditions (APBC) on then duark propagators
such that their lowest momentum gL, wherelL is the lattice spatial box length. Any charged
pions formed from these therefore also have a minimum momentumilof This introduces two
further difficulties: firstly the quark momentum cancels between the two doarkg in the neutral
pion state, hence we are restricted to decay channels containing onjedhmons; and secondly
applying APBC only to the down quarks breaks the isospin symmetry, allovétgssof different
isospin to mix. For thé\, calculation, both of these difficulties were avoided by using the Wigner-
Eckart theorem to relate the physidd, = 1/2, K+ — " ni® decay to the unphysicall, = 3/2,
K* — m" ™ decay, which contains only charged pions and is protected from mixing whitr o
isospin states by virtue of charge conservation due to it being the onlgei2astate.

For the calculation of\y we must consider both th€® — (7" 11 )9 andK® — (1°711°),_
channels. Here there are no alternlate O states to which these can be related in order to avoid
the effects of the isospin breaking introduced by imposing APBC on the donarks. In order to
proceed we could attempt to pick out the excited state contribution in the demagyer, as we
expect the measurement to be very noisy due to the presence of distazthdiagrams, it is highly
unlikely that we would be able to find a signal for the excited state contribudinather possibility
have a non-zero total momentum in the lattice reference frame; the lowegy@oafiguration has
a moving kaon in the initial state, along with one stationary pion and one movindqaorying the
kaon momentum) in the final state. For a typical lattice this configuration contagesraomentum
amplitudes that are typically noisy and hard to compute [3]. The alternativefisd@ method
of imposing momentum on both the charged and neutral pions without breekiggin. One
possibility is to use G-parity boundary conditions [1, 2] (GPBC).

G-parity is the combined action of the charge conjugation operation and gpirismtation
by 1 radians about the y-axis3 = Cé™ ). Both the charged and neutral pions are G-parity odd
eigenstates, hence applying this operation on the lattice boundary isleqtilcaimposing APBC
on the pion states, giving them a minimum momentumdf. As G-parity commutes with isospin
we can avoid any mixing of the final states with those of different isospithéguark level,

R AT
e(2)-(&)

whereC = y2y* in Euclidean space. If we defing®© = d andy® =cu™ (¢V) = —u'C"), the
GPBC (here in the x-direction) take on the simple form:

YO (s+L%) = yW(s), YW (s+L%) = —¢(s), (2.2)

wheres is a general lattice coordinate. This implies that the fighdis are antiperiodic in 2 and
therefore that the quarks have a minimum momenturm/f. Due to the presence of discon-
nected diagrams, these boundary conditions must be applied in both theeval®h sea sectors,
necessitating the generation of a new set of ensembles.

3. Implementation of G-parity Boundary Conditions
3.1 Gauge Field Boundary Conditions

Imposing GPBC on the quarks requires a modification of the boundanytmrsland gauge
transformations of the links. To see this consider the bilinear opegd®oi. — 1)Uy (L — 1)@ (L)
at the lattice boundary in thedirection, where we have suppressed all but the x-coordinate in the
brackets, and impose GPBC on the quar& (L — 1)Uy (L — 1)@Y(0). Under a gauge transfor-
mationV (x) this transforms as
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Figure 1. Two strategies for imposing GPBC in a second direction inadhe-flavour setup. In the first

approach (left) we modify the communications such thatéffiealnd right fields join on the upper and lower
lattice boundaries as well as the left and right boundarigsis requires non-local communication for a
standard 4d toroidal computer. In the second approachtrmghdouble the lattice again in the y-direction.
The fields in the four quadrants must be set up and maintaisesh@wn in the figure. Here the minus
sign on the upper-right quadrant appears due to the doupleation of the GPBC when moving from the
lower-left to upper-right quadrants.

@O (L - UL - P (0) — gL - DVT(L - UL - DV (0) P (0). (3.1)
We see that in order to maintain gauge invariance, theljtk — 1) crossing the G-parity boundary
must transform ably(L — 1) — V(L — 1)Uyx(L — 1)VT(0). Building a staple across the boundary
and applying a gauge transformation to the links crossing the boundary,

UX(L - 17y)UY(L7y)U).(r(L - 17y+ 1)
= V(L= Ly)Ux(L = LyVT(Ly)Uy(Ly)V*(Ly+ DUT (L= Ly+ VT (L - Ly+1),
(3.2)

we see thatly(L,y) — V*(L,y)Uy(L,y)VT (L,y+1), from which we can identifi(L,y) = Uy (0,y),
i.e. the links obey charge conjugation boundary conditions in the G-parégtain.

770(0) ¢(1)

3.2 Implementation Strategies

Conceptually the simplest implementation is to maintain on each lattice site two quark fields
PO andy, that mix at the G-parity boundary under the parallel transport acaptdiagn. 2.2.
The Dirac operator for theyV field takes the same form as that fpf® only with complex-
conjugated gauge links (in practise it is convenient to store UaéimdU * fields in memory). We
refer to this as the ‘two-flavour’ method. In order to implement this strategysiamdard lattice
library (CPS, QDP++/Chroma, etc.) extensive changes are requireddmadate two fields that
are joined at the boundary as well as the unusual boundary conditiadhg gauge links.

For GPBC in a single direction, a far more straightforward ‘one-flavapproach [3] is to
consider the superscripon the fieldgp(!) as an index labelling the two halves of a doubled lattice.
Essentially we unroll the two fields onto a single lattice of doubled size uportwihéfieldy©
and the gauge links lie on the first half, agd? and the complex-conjugated links lie on the
second half. As the fields are antiperiodic in, Zhe GPBC are equivalent to regular antiperiodic
BCs on this doubled lattice. Although this approach requires only minor codeges, it does
not scale well when GPBC are required in more than one direction (aseqased for obtaining
physical kinematics in thé, calculation). The difficulty is that in traversing a G-parity boundary
from a site ony(?, one must always reach the neigbouring site butpsh. The doubling of the
lattice accomplishes this in one direction, but in any other G-parity directiomevi@eced either to
communicate non-locally (assuming a standard four-dimensional toroigaitlaffcompute nodes)
or to double the lattice again, taking pains to ensure that the fields on the aqumodnant remain
identical to those on the lower quadrant. These two scenarios are skéaidigure 1. The second
approach is highly inefficient due to the necessity of doubling the lattice sizenaintaining the
redundant degrees of freedom on the upper half. The efficienttyedirst approach is dependent
on how the machine handles non-local data communication and would regbstastial code
modifications of a similar scale to the two-flavour approach. On the other, tiaadwo flavour
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approach suffers no performance hits when applying GPBC in multipletidinsc As a result we
chose to implement this approach for Ay calculation. The one-flavour strategy (double/quad
lattice), however, provides an extremely useful cross-check of adg modifications, therefore in
practise we implemented both strategies.
3.3 G-parity Propagators

Due to the mixing of the quark flavours at the boundary, GBPC allow fosualcontractions:

PO PO (y) = 19 (x,y) = Cu’ (x)d(y), (3.3)
1

PO (y) =4O (xy) = —d(xu" (y)C,
where% (1) (x,y) is a quark propagator between positigrandx and flavour indiceg andi. In the
first line of the above, a down quark propagates through the boumdaase it is annihilated as an
anti-up quark. In the second line an anti-up quark propagates oveotimelary and is annihilated
as a down quark. We may interpret this as the boundary destroying eatingr quark flavour
respectively, thus violating baryon number conservation.

The flavour mixing at the boundary can dramatically increase the numbeiaf dntrac-
tions associate with a given amplitude. Fortunately the underlying symmetridd@uad least two
relations that can be used to simplify a calculation. We have the y3idrmiticity, which allows
us to relate propagators crossing the G-parity boundary as follows:

h
I OD x| =90y (3.4)

We can also exploit the fact that® andy? interact with the same gauge fields (albeit complex-
conjugated for the latter). If we wril!dflo) (X) =Uu(x) ande,l) (x) = U (x), the Dirac matrix has
the following dependence on the gauge links:

BV 0cy) ~ 3 (PH0y+ B IUL () +PES(y - BIIUY (y— )+ (35)

o

where we only show the links in the G-parity direction{g)}. Herei, j € {0,1} are flavour in-
dices, ang3(®9) = g(1.1) — g(1.0) — _B(0.1) — 1 provides the minus-sign on the G-parity boundary
between flavours 1 and 0 (i.e. the global lattice boundary in the one-flavodel). P! are spin
operators: for naive fermior&' = £3y# and for Wilson/domain wall fermionBt = 3(1+ y#).

Taking the complex conjugate and exploitiyRg(y*)*CTy® = —y(y*)Ty® = yH (they-matrices
are Hermitian in Euclidean space), we find:

voC 5 (PHo00y+BUIUR (y) + PES(xy— )BIIUL (v — 1)) +.. | 1y
= 5 (PH800y+ BN (y) 4+ PES(xy — BIIUL ty— 1)) + ...
. 3.6
Using the definitiory, ; (1) (x y)@ (1K (y,2) = 50K 5(x, z) and applying the above relatlo(nshl)p

Syi | Su (PA8(z— A yBRIUS (2= 1) +PES(E+ 0y BIIUS N @)+ x (39
yP’C[Z 1M (y, 2)] *CTy5—1
Writing B0 = (—1)li-Kp(1-1.1-K) this can be restated as

zwl 17D (% y) (— 1)l KyACig 0 (y, )1 CTyP = 1, (3.8)
from which we can |dent|fy
(111K (y 7) = (—1)IKyAC[@ 19 (y, 2)*CTyP. (3.9)

3.4 The Strange Quark
The ultimate goal is to calculate tike— rrrramplitudeAy, for which, as discussed previously,
we desire to have the neutral kaon stationary in the lattice rest frame. tumdbely thek© state,

%(s_d +ds), is not a G-parity eigenstate, therefore not only will the GPBC preventftbia
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forming a stationary particle (recall the minimum light quark momentum/iL), but the state
will also mix with other unphysical states with non-zero baryon number.

One possible solution is to place the strange quark in a fictional isospin deuitilea degen-
erate partner that we labgl If we also impose GPBC on the strange doublet we can write down a
‘neutral kaon’ analogu&® = %(s_d +ds+Su+us) that is a G-parity even eigenstate, and hence
can form a stationary state. The only required modification tAthealculation would be to apply
an extra factor o% as only half of the components will couple to the state.

This strategy has one pitfall: although there are no disconnected styaiage-loops, the
charge-conjugation symmetry of the gauge field forces us to also impos€ GRBhe strange
sea quarks. Here, the introduction of the fictional strange quark pasealts in there being
one too many flavours in our simulation. This can be rectified by taking theeqaat of the
s'/s determinant in the gauge evolution using the rational approximation, hovirewring so
the action becomes non-local. Note that the non-locality appears due to the sigmuin the
boundary conditions; if we change+ CST — —stos—CS " — +s, thes'/sdeterminant becomes
the square of the Pfaffian of the one-flavour determinant [3]. Thelowadity is therefore only
a boundary effect and should remain small at sufficiently large volumesveikr this remains
an issue that must be examined more closely in the future, possibly by olgséme effects of
switching the sign on the boundary, or through the use of staggered phitarbation theory.

3.5 Correlation Functions
The amplitude of the propagation ofret meson frorryto X has the following form:

(ePudny’dy) = (B [y°C B Ty T ey u) (3.10)

Due to flavour mixing this has two contractions as opposed to the usual ppé/idg the relation-
ships derived in the previous section, these reduce to

tr{g 0T (x, y) 7 (x,y)} —tr{# 0T (x,y)7 1 (x,y)}, (3.11)
which have a form similar to the usual pion contraction; indeed, takingo, the second compo-
nent involving propagation across the boundary must vanish leavinglomlsegular contraction.
Although this may appear to require only a single propagator inversion &source of flavour
zero, the necessity of applying a phase at the source location to projedhe correct momentum
component along with the fact that this contains both regular and hermitigoeade propagators,
means that, unless one is using a point source or a source that is invardertp — —p (for
example a cosine source), two inversions are required.

It is interesting to observe thé€" propagator in the setup described in the previous section. The
analogueK™ creation operator i&*' = \% (Jy55—§’y5d), which is a G-parity even eigenstate.
Labelling® = sandy©® = CST, the contractions are:

%tr{&é(zvz)’f(x,y)%oo (X,Y) }+1tr{£¢22 (X,y)4 )}
+5tr {921 (x y)g1O(x,y) } + 1tr{€¢ (32)(x y)%( OT(x,y)} .
In the case of degenerate quankgs: My = My = my this reduces to the same form as eqgn. 3.11 only

with the opposite sign between the two contractions. This suggests that thermmomentum
of G-parity odd eigenstates arises from the relative phases of the Widtactions.

4. Preliminary Results

We have implemented both the one-flavour and two-flavour approaches ®@RB++ code-
base. As the intention is to run on our IBM BlueGene/Q supercomputersawee diso imple-
mented these approaches in the Bagel/Bfm library (called from within CRSvhi¢h contains
assembly routines specifically optimised for this hardware.

As a preliminary test we generated using HMC a series*of 82 x 10 quenched ensembles
with the lwasaki gauge action and domain wall valence quarks. For GPB( ja and 3 direc-
tions, we generated 150 configurations separated by 20 MD time units. \airedahert™ and

(3.12)
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Figure2: The value o2 — ¥ for the pion (green squares) and kaon (red circles) plotjaghat the number

of G-parity directions), whereE is the measured energy amds the rest-mass as measured on a the regular
periodic lattice. For the pion we also plot the expected mutoma, p% = n(7r/L)?, along the x-axis with

the same scale as the y-axis such that the continuum dispeesationE2 — m2 = pZ (blue line) lies along

the diagonal. Although we expect the kaon to have zero mamemte plot the points at the same x-axis
positions for comparison, and also plot the expected (flapeadsion relation in blue.

degenerat& ™’ correlation functions given in the previous section using Coulomb gangd-fiall
source propagators with the appropriate source phases. In figuegplbtithe dispersion relations
of the pion and kaon against the continuum dispersion relations, seadgagoeement. Note that
at higher momenta we should not expect perfect agreement in anycéeea@ntinuum dispersion
relation becomes modified on the lattice.

5. Conclusions and Outlook

In these proceedings we have discussed several of the challengk®ihin measuring the
Al =1/2 K — mrimamplitude on the lattice. This is a very important quantity to measure as, when
combined with our existing measurement of tkle= 3/2 amplitude, a first-principles calculation
of the amount of direct CP-violation in the Standard Model can be perfibrme

We introduced G-parity as a solution to the difficulty of imposing momentum on tlaé¢ fin
state pions, such that energy is conserved in the decay while retaininggpimisymmetry. We
discussed two strategies for implementation and also some of the unusuzkaspealculations
involving these boundary conditions. We noted that taking the squateftite fictional strange-
quark doublet leads to a non-local effective action; although this is obhbuadary effect that we
expect will be small, this remains an issue which requires further studye fimil section we gen-
erated several quenched ensembles with domain wall fermions and Gipauitgary conditions
in multiple directions, demonstrating that the pion does indeed have a non-agtgtground state
with the expected momentum and that stationary kaon-analogue states cadleeg.

At the time of writing we have already started generatingx182 fully dynamical 2+1f do-
main wall fermion ensembles for testing purposes using our IBM BlueGensffpnmees, and we
intend to start a 32x 64 domain wall ensemble with physical quark masses and G-parity BCs in
the near future for the purpose of measuringhe- 1/2 K — it amplitude.
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