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1. Introduction
In the Standard Model, CP-violation occurs due to a non-zero phaseδ in the CKM matrix

that parameterises the mixing between quark flavours through the weak interaction. As a result
the low-energy effective Hamiltonian of the weak interactions and CP becomenon-commuting
operators. This manifests indirectly as a mixing of CP-eigenstates, e.g. in theK0− K̄0 andB0− B̄0

systems, and also directly in decays, as was first observed in the decay of CP-odd kaon states into
the CP-even two-pion state.

K → ππ decays can occur via the∆I = 3/2 channel to an isospin-2 final state,e.g.K± →
π±π0, and also via the∆I = 1/2 channel to an isospin-0 final state, e.g.K0 → (π+π−)I=0 and
K0 → (π0π0)I=0 (we include a subscript becauseπ+π− and π0π0 can also formI = 2 states).
The decay amplitudes are labelledA2 andA0 respectively. Direct CP-violation manifests here as a
difference in the complex phases of the two amplitudes:

ε ′ =
iωei(δ2−δ0)

√
2

(

ImA2

ReA2
− ImA0

ReA0

)

, (1.1)

whereω = ReA2/ReA0 andδi are the strong-rescattering phase shifts. The quantityε ′ parame-
terises the amount of direct CP-violation, and is highly sensitive to beyond the Standard Model
sources of CP-violation. As a result there is a strong motivation for obtaining a precise first-
principles determination of this quantity within the Standard Model.

Non-perturbative strong interactions play an important role in these decays, for example they
give rise to a strong preference for the kaon to decay into the isospin-0 state over the isospin-2 state
– the so-called∆I = 1/2 rule – the mechanism for which is not yet fully understood. Lattice QCD
is currently the only method by which the strong dynamics can be studied from first principles,
however measuring such hadronic decays on the lattice has only recently become possible and
has required significant theoretical and technological advances. TheRBC&UKQCD collaboration
have recently published [5, 6] the first realistic ab initio calculation ofA2 from theK+ → π+π0

decay channel. Unfortunately the calculation ofA0 poses further challenges that must be overcome
before we can provide a complete first-principles calculation ofε ′.

Below we discuss the difficulties in the measurement ofA0 and present G-parity boundary
conditions as a solution to one such problem. We then detail their implementation on the lattice
and present some of the more unusual aspects of calculations involving them. We present some
preliminary results showing that the boundary conditions have the desired effect, and discuss fur-
ther difficulties that must be overcome before the technique can be applied totheK → ππ decays.
2. Challenges in Measuring A0 and G-parity Boundary Conditions

One difficulty in measuring the∆I = 1/2 amplitude is the presence of disconnected diagrams
in theππ propagator that appear due to the fact that the I=0 two-pion state, unlike the I=2 state, has
vacuum quantum numbers and can therefore be absorbed into the vacuum and recreated at a later
time. The measurement of disconnected diagrams on the lattice is usually very noisy, requiring
large statistics and many source positions for the quark propagators to resolve. Fortunately, using
advanced propagator measurement techniques such as all-mode-averaging or all-to-all propagators,
such calculations are now feasible. This is demonstrated in ref. [4], in which the all-to-all technique
was used in calculating the∆I = 1/2 K → ππ decay at zero momentum transfer on a 163×32 do-
main wall lattice with unphysical quark masses. Of course the larger-lattice, physical calculations
we outline in the conclusions of this document will require considerably more powerful machines
such as the IBM BlueGene/Q machines now available to RBC&UKQCD.

A more difficult challenge is that of conserving energy in the decay, whichrequires the two
pions to be moving away from each other in the kaon rest frame. As the momentum is discretised
by the finite lattice volume, careful tuning of the lattice size is necessary. For the calculation ofA2

we investigated several approaches, finding that the strongest signalwas obtained using a stationary
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kaon in the lattice reference frame. The required non-zero momentumππ state is an excited state of
theππ spectrum, hence the measurement of the physicalK → ππ decay requires the subtraction of
the much larger contribution from the unphysical decay to the zero momentum ground state. This
can be avoided using antiperiodic boundary conditions (APBC) on the down quark propagators
such that their lowest momentum isπ/L, whereL is the lattice spatial box length. Any charged
pions formed from these therefore also have a minimum momentum ofπ/L. This introduces two
further difficulties: firstly the quark momentum cancels between the two down quarks in the neutral
pion state, hence we are restricted to decay channels containing only charged pions; and secondly
applying APBC only to the down quarks breaks the isospin symmetry, allowing states of different
isospin to mix. For theA2 calculation, both of these difficulties were avoided by using the Wigner-
Eckart theorem to relate the physical∆Iz = 1/2, K+ → π+π0 decay to the unphysical∆Iz = 3/2,
K+ → π+π+ decay, which contains only charged pions and is protected from mixing with other
isospin states by virtue of charge conservation due to it being the only charge-2 state.

For the calculation ofA0 we must consider both theK0 → (π+π−)I=0 andK0 → (π0π0)I=0

channels. Here there are no alternateI = 0 states to which these can be related in order to avoid
the effects of the isospin breaking introduced by imposing APBC on the downquarks. In order to
proceed we could attempt to pick out the excited state contribution in the decay,however, as we
expect the measurement to be very noisy due to the presence of disconnected diagrams, it is highly
unlikely that we would be able to find a signal for the excited state contribution.Another possibility
have a non-zero total momentum in the lattice reference frame; the lowest energy configuration has
a moving kaon in the initial state, along with one stationary pion and one moving pion(carrying the
kaon momentum) in the final state. For a typical lattice this configuration contains large momentum
amplitudes that are typically noisy and hard to compute [3]. The alternative is tofind a method
of imposing momentum on both the charged and neutral pions without breakingisospin. One
possibility is to use G-parity boundary conditions [1, 2] (GPBC).

G-parity is the combined action of the charge conjugation operation and an isospin rotation
by π radians about the y-axis:̂G = Ĉeiπ Î(y). Both the charged and neutral pions are G-parity odd
eigenstates, hence applying this operation on the lattice boundary is equivalent to imposing APBC
on the pion states, giving them a minimum momentum ofπ/L. As G-parity commutes with isospin
we can avoid any mixing of the final states with those of different isospin. Atthe quark level,

Ĝ

(

u
d

)

=

(

−Cd̄T

CūT

)

, (2.1)

whereC = γ2γ4 in Euclidean space. If we defineψ(0) = d andψ(1) = CūT (ψ̄(1) = −uTC†), the
GPBC (here in the x-direction) take on the simple form:

ψ(0)(s+Lx̂) = ψ(1)(s) , ψ(1)(s+Lx̂) =−ψ(0)(s) , (2.2)

wheres is a general lattice coordinate. This implies that the fieldsψ(i) are antiperiodic in 2L and
therefore that the quarks have a minimum momentum ofπ/2L. Due to the presence of discon-
nected diagrams, these boundary conditions must be applied in both the valence and sea sectors,
necessitating the generation of a new set of ensembles.

3. Implementation of G-parity Boundary Conditions

3.1 Gauge Field Boundary Conditions

Imposing GPBC on the quarks requires a modification of the boundary conditions and gauge
transformations of the links. To see this consider the bilinear operator¯ψ(0)(L−1)Ux(L−1)ψ(0)(L)
at the lattice boundary in thex-direction, where we have suppressed all but the x-coordinate in the
brackets, and impose GPBC on the quarks:ψ̄(0)(L−1)Ux(L−1)ψ(1)(0). Under a gauge transfor-
mationV (x) this transforms as
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Figure 1: Two strategies for imposing GPBC in a second direction in theone-flavour setup. In the first
approach (left) we modify the communications such that the left and right fields join on the upper and lower
lattice boundaries as well as the left and right boundaries.This requires non-local communication for a
standard 4d toroidal computer. In the second approach (right) we double the lattice again in the y-direction.
The fields in the four quadrants must be set up and maintained as shown in the figure. Here the minus
sign on the upper-right quadrant appears due to the double application of the GPBC when moving from the
lower-left to upper-right quadrants.

ψ̄(0)(L−1)Ux(L−1)ψ(1)(0)−→ ψ̄(0)(L−1)V †(L−1)Ux(L−1)V ∗(0)ψ(1)(0) . (3.1)
We see that in order to maintain gauge invariance, the linkUx(L−1) crossing the G-parity boundary
must transform asUx(L−1) → V (L−1)Ux(L−1)V T (0). Building a staple across the boundary
and applying a gauge transformation to the links crossing the boundary,

Ux(L−1,y)Uy(L,y)U†
x (L−1,y+1)

→V (L−1,y)Ux(L−1,y)V T (L,y)Uy(L,y)V ∗(L,y+1)U†
x (L−1,y+1)V †(L−1,y+1) ,

(3.2)
we see thatUy(L,y)→V ∗(L,y)Uy(L,y)V T (L,y+1), from which we can identifyUy(L,y)=U∗

y (0,y),
i.e. the links obey charge conjugation boundary conditions in the G-parity direction.

3.2 Implementation Strategies
Conceptually the simplest implementation is to maintain on each lattice site two quark fields,

ψ(0) andψ(1), that mix at the G-parity boundary under the parallel transport according to eqn. 2.2.
The Dirac operator for theψ(1) field takes the same form as that forψ(0) only with complex-
conjugated gauge links (in practise it is convenient to store bothU andU∗ fields in memory). We
refer to this as the ‘two-flavour’ method. In order to implement this strategy in astandard lattice
library (CPS, QDP++/Chroma, etc.) extensive changes are required to accomodate two fields that
are joined at the boundary as well as the unusual boundary conditions on the gauge links.

For GPBC in a single direction, a far more straightforward ‘one-flavour’approach [3] is to
consider the superscripti on the fieldsψ(i) as an index labelling the two halves of a doubled lattice.
Essentially we unroll the two fields onto a single lattice of doubled size upon which the fieldψ(0)

and the gauge links lie on the first half, andψ(1) and the complex-conjugated links lie on the
second half. As the fields are antiperiodic in 2L, the GPBC are equivalent to regular antiperiodic
BCs on this doubled lattice. Although this approach requires only minor code changes, it does
not scale well when GPBC are required in more than one direction (as was required for obtaining
physical kinematics in theA2 calculation). The difficulty is that in traversing a G-parity boundary
from a site onψ(0), one must always reach the neigbouring site but onψ(1). The doubling of the
lattice accomplishes this in one direction, but in any other G-parity direction we are forced either to
communicate non-locally (assuming a standard four-dimensional toroidal layout of compute nodes)
or to double the lattice again, taking pains to ensure that the fields on the upperquadrant remain
identical to those on the lower quadrant. These two scenarios are sketched in figure 1. The second
approach is highly inefficient due to the necessity of doubling the lattice size and maintaining the
redundant degrees of freedom on the upper half. The efficiency ofthe first approach is dependent
on how the machine handles non-local data communication and would require substantial code
modifications of a similar scale to the two-flavour approach. On the other hand, the two flavour
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approach suffers no performance hits when applying GPBC in multiple directions. As a result we
chose to implement this approach for ourA0 calculation. The one-flavour strategy (double/quad
lattice), however, provides an extremely useful cross-check of any code modifications, therefore in
practise we implemented both strategies.
3.3 G-parity Propagators

Due to the mixing of the quark flavours at the boundary, GBPC allow for unusual contractions:

ψ(1)(x)ψ̄(0)(y) = G (1,0)(x,y) =CūT (x)d̄(y) ,

ψ(0)(x)ψ̄(1)(y) = G (0,1)(x,y) =−d(x)uT (y)C† ,

(3.3)

whereG (i, j)(x,y) is a quark propagator between positionsy andx and flavour indicesj andi. In the
first line of the above, a down quark propagates through the boundarywhere it is annihilated as an
anti-up quark. In the second line an anti-up quark propagates over the boundary and is annihilated
as a down quark. We may interpret this as the boundary destroying and creating quark flavour
respectively, thus violating baryon number conservation.

The flavour mixing at the boundary can dramatically increase the number of Wick contrac-
tions associate with a given amplitude. Fortunately the underlying symmetries provide at least two
relations that can be used to simplify a calculation. We have the usualγ5-hermiticity, which allows
us to relate propagators crossing the G-parity boundary as follows:

[

γ5
G

(0,1)(x,y)γ5
]†

= G
(1,0)(y,x) . (3.4)

We can also exploit the fact thatψ(0) andψ(1) interact with the same gauge fields (albeit complex-
conjugated for the latter). If we writeU (0)

µ (x) =Uµ(x) andU (1)
µ (x) =U∗

µ(x), the Dirac matrix has
the following dependence on the gauge links:

/D(i, j)
(x,y)∼ ∑

µ

(

Pµ
−δ (x,y+ µ̂)β (i, j)U ( j)†

µ (y)+Pµ
+δ (x,y− µ̂)β ( j,i)U (i)

µ (y− µ̂)
)

+ . . . , (3.5)

where we only show the links in the G-parity direction(s){µ}. Herei, j ∈ {0,1} are flavour in-
dices, andβ (0,0) = β (1,1) = β (1,0) =−β (0,1) = 1 provides the minus-sign on the G-parity boundary
between flavours 1 and 0 (i.e. the global lattice boundary in the one-flavour model). Pµ

± are spin
operators: for naïve fermionsPµ

± =±1
2γµ and for Wilson/domain wall fermionsPµ

± = 1
2(1± γµ).

Taking the complex conjugate and exploitingγ5C(γµ)∗C†γ5=−γ5(γµ)†γ5= γµ (theγ-matrices
are Hermitian in Euclidean space), we find:

γ5C
[

∑µ

(

Pµ
−δ (x,y+ µ̂)β (i, j)U ( j)†

µ (y)+Pµ
+δ (x,y− µ̂)β ( j,i)U (i)

µ (y− µ̂)
)

+ . . .
]∗

C†γ5

= ∑µ

(

Pµ
−δ (x,y+ µ̂)β (i, j)U (1− j)†

µ (y)+Pµ
+δ (x,y− µ̂)β ( j,i)U (1−i)

µ (y− µ̂)
)

+ . . . .

(3.6)
Using the definition∑y, j /D

(i, j)
(x,y)G ( j,k)(y,z) = δ (i,k)δ (x,z) and applying the above relationship:

∑y, j

[

∑µ

(

Pµ
−δ (z− µ̂,y)β (k, j)U (1− j)†

µ (z− µ̂)+Pµ
+δ (z+ µ̂,y)β ( j,k)U (1−k)

µ (z)
)

+ . . .
]

×
γ5C[G ( j,k)(y,z)]∗C†γ5 = 1.

(3.7)

Writing β ( j,k) = (−1)| j−k|β (1− j,1−k), this can be restated as

∑
y, j

/D(1−k,1− j)
(x,y)(−1)| j−k|γ5C[G ( j,k)(y,z)]∗C†γ5 = 1, (3.8)

from which we can identify
G

(1− j,1−k)(y,z) = (−1)| j−k|γ5C[G ( j,k)(y,z)]∗C†γ5 . (3.9)
3.4 The Strange Quark

The ultimate goal is to calculate theK → ππ amplitudeA0, for which, as discussed previously,
we desire to have the neutral kaon stationary in the lattice rest frame. Unfortunately theK0 state,

1√
2
(s̄d + d̄s), is not a G-parity eigenstate, therefore not only will the GPBC prevent thisfrom
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forming a stationary particle (recall the minimum light quark momentum isπ/2L), but the state
will also mix with other unphysical states with non-zero baryon number.

One possible solution is to place the strange quark in a fictional isospin doublet with a degen-
erate partner that we labels′. If we also impose GPBC on the strange doublet we can write down a
‘neutral kaon’ analogueK0′ = 1

2(s̄d + d̄s+ s̄′u+ ūs′) that is a G-parity even eigenstate, and hence
can form a stationary state. The only required modification to theA0 calculation would be to apply
an extra factor of12 as only half of the components will couple to theππ state.

This strategy has one pitfall: although there are no disconnected strange-quark loops, the
charge-conjugation symmetry of the gauge field forces us to also impose GPBC on the strange
sea quarks. Here, the introduction of the fictional strange quark partner results in there being
one too many flavours in our simulation. This can be rectified by taking the square-root of the
s′/s determinant in the gauge evolution using the rational approximation, howeverin doing so
the action becomes non-local. Note that the non-locality appears due to the minus sign in the
boundary conditions; if we changes→Cs̄′T →−s to s→Cs̄′T →+s, thes′/s determinant becomes
the square of the Pfaffian of the one-flavour determinant [3]. The non-locality is therefore only
a boundary effect and should remain small at sufficiently large volumes. However this remains
an issue that must be examined more closely in the future, possibly by observing the effects of
switching the sign on the boundary, or through the use of staggered chiral perturbation theory.

3.5 Correlation Functions
The amplitude of the propagation of aπ+ meson fromy to x has the following form:

〈d̄xγ5uxūyγ5dy〉= 〈ψ̄(0)
x [γ5C]ψ̄(1)T

x ψ(1)T
y [Cγ5]ψ(0)

y 〉 . (3.10)
Due to flavour mixing this has two contractions as opposed to the usual one. Applying the relation-
ships derived in the previous section, these reduce to

tr
{

G
(0,0)†(x,y)G (0,0)(x,y)

}

− tr
{

G
(1,0)†(x,y)G (1,0)(x,y)

}

, (3.11)
which have a form similar to the usual pion contraction; indeed, takingL → ∞, the second compo-
nent involving propagation across the boundary must vanish leaving onlythe regular contraction.
Although this may appear to require only a single propagator inversion froma source of flavour
zero, the necessity of applying a phase at the source location to project onto the correct momentum
component along with the fact that this contains both regular and hermitian-conjugate propagators,
means that, unless one is using a point source or a source that is invariantunder p → −p (for
example a cosine source), two inversions are required.

It is interesting to observe theK+ propagator in the setup described in the previous section. The
analogue-K+ creation operator isK+ ′ = 1√

2

(

ūγ5s− s̄′γ5d
)

, which is a G-parity even eigenstate.

Labellingψ(2) = s andψ(3) =Cs̄′T , the contractions are:
1
2tr

{

G (2,2)†(x,y)G (0,0)(x,y)
}

+ 1
2tr

{

G (2,2)(x,y)G (0,0)†(x,y)
}

+1
2tr

{

G (3,2)†(x,y)G (1,0)(x,y)
}

+ 1
2tr

{

G (3,2)(x,y)G (1,0)†(x,y)
}

.
(3.12)

In the case of degenerate quarksms =ms′ =md =mu this reduces to the same form as eqn. 3.11 only
with the opposite sign between the two contractions. This suggests that the non-zero momentum
of G-parity odd eigenstates arises from the relative phases of the Wick contractions.

4. Preliminary Results
We have implemented both the one-flavour and two-flavour approaches in the CPS++ code-

base. As the intention is to run on our IBM BlueGene/Q supercomputers, we have also imple-
mented these approaches in the Bagel/Bfm library (called from within CPS++), which contains
assembly routines specifically optimised for this hardware.

As a preliminary test we generated using HMC a series of 84×32×10 quenched ensembles
with the Iwasaki gauge action and domain wall valence quarks. For GPBC in0,1,2 and 3 direc-
tions, we generated 150 configurations separated by 20 MD time units. We measured theπ+ and
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Figure 2: The value ofE2−m2 for the pion (green squares) and kaon (red circles) plotted against the number
of G-parity directionsn, whereE is the measured energy andm is the rest-mass as measured on a the regular
periodic lattice. For the pion we also plot the expected momentum, p2

π = n(π/L)2, along the x-axis with
the same scale as the y-axis such that the continuum dispersion relationE2

π −m2
π = p2

π (blue line) lies along
the diagonal. Although we expect the kaon to have zero momentum we plot the points at the same x-axis
positions for comparison, and also plot the expected (flat) dispersion relation in blue.

degenerateK+ ′ correlation functions given in the previous section using Coulomb gauge-fixed wall
source propagators with the appropriate source phases. In figure 2 we plot the dispersion relations
of the pion and kaon against the continuum dispersion relations, seeing good agreement. Note that
at higher momenta we should not expect perfect agreement in any case as the continuum dispersion
relation becomes modified on the lattice.

5. Conclusions and Outlook

In these proceedings we have discussed several of the challenges involved in measuring the
∆I = 1/2 K → ππ amplitude on the lattice. This is a very important quantity to measure as, when
combined with our existing measurement of the∆I = 3/2 amplitude, a first-principles calculation
of the amount of direct CP-violation in the Standard Model can be performed.

We introduced G-parity as a solution to the difficulty of imposing momentum on the final
state pions, such that energy is conserved in the decay while retaining the isospin symmetry. We
discussed two strategies for implementation and also some of the unusual aspects of calculations
involving these boundary conditions. We noted that taking the square-root of the fictional strange-
quark doublet leads to a non-local effective action; although this is only aboundary effect that we
expect will be small, this remains an issue which requires further study. In the final section we gen-
erated several quenched ensembles with domain wall fermions and G-parityboundary conditions
in multiple directions, demonstrating that the pion does indeed have a non-stationary ground state
with the expected momentum and that stationary kaon-analogue states can be produced.

At the time of writing we have already started generating 163×32 fully dynamical 2+1f do-
main wall fermion ensembles for testing purposes using our IBM BlueGene/Q resources, and we
intend to start a 323×64 domain wall ensemble with physical quark masses and G-parity BCs in
the near future for the purpose of measuring the∆I = 1/2 K → ππ amplitude.
References
[1] U. J. Wiese, Nucl. Phys. B375 (1992) 45.
[2] C. Kim, Nucl. Phys. Proc. Suppl.129 (2004) 197 [hep-lat/0311003].
[3] C. Kim and N. H. Christ, PoS LAT2009 (2009) 255 [arXiv:0912.2936 [hep-lat]].
[4] T. Blum et al., Phys. Rev. D84 (2011) 114503 [arXiv:1106.2714 [hep-lat]].
[5] T. Blum et al., Phys. Rev. Lett.108 (2012) 141601 [arXiv:1111.1699 [hep-lat]].
[6] T. Blum et al., arXiv:1206.5142 [hep-lat].

7


