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The role of the charm quark in the dynamics underlying the A7 = 1/2 rule for kaon decays can be
understood by studying the dependence of kaon decay amplitudes on the charm quark mass using
an effective AS = 1 weak Hamiltonian in which the charm is kept as an active degree of freedom.
Overlap fermions are employed in order to avoid renormalization problems, as well as to allow
access to the deep chiral regime. Quenched results in the GIM limit have shown that a significant
part of the enhancement is purely due to low-energy QCD effects; variance reduction techniques
based on low-mode averaging were instrumental in determining the relevant weak effective low-
energy couplings in this case. Moving away from the GIM limit requires the computation of
diagrams containing closed quark loops. We report on our progress to employ a combination
of low-mode averaging and stochastic volume sources in order to control these contributions.
Results showing a significant improvement in the statistical signal are presented.

The 30th International Symposium on Lattice Field Theory
June 24 - 29, 2012
Cairns, Australia

*Speaker.

(© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/


mailto:eric.endress@uam.es
mailto:carlos.pena@uam.es

The AI = 1/2 rule Eric Endress

1. Introduction

The decay of a neutral kaon into two pions in a state with isospin / is described by the transition
amplitudes

iAre’® = ((nm)|H,|K"), (1.1)

where H,, is the AS = 1 effective weak Hamiltonian and &; the wr-scattering phase shift. In exper-
iments it is observed that the kaon decay amplitude into two pions with total isospin I = 0 is about
twenty times larger than the amplitude into a state with I =2, i.e.

Ag/As| ~ 22. (1.2)

This enhancement, referred to as Al = 1/2 rule, remains one of the long-standing problems in
hadron physics. Within the Standard Model, short-distance QCD and electroweak effects yield
only a moderate enhancement. Therefore, the main contribution is expected to come from long-
distance, i.e. non-perturbative, QCD effects or, if this is not the case, from new physics. Lattice
QCD is the only known technique that allows to attack the problem from first principles, and pos-
sibly to reveal the origin of the Al = 1/2 rule.

In the low-energy regime of QCD various sources for the enhancement are possible. These include
pionic final state interactions at around 100 MeV; physics at an intrinsic QCD scale of Agcp ~ 250
MeV; or physics at the scale of the charm quark, i.e. around 1.3 GeV. It remains unclear whether
the experimental observation is the result of an accumulation of several effects, or mainly due to a
single cause or mechanism.

A theoretically well-defined strategy to disentangle non-perturbative QCD contributions from var-
ious sources was proposed in Ref. [1], with the specific aim to reveal the role of the charm quark
in the explanation of the Al = 1/2 rule. The possibility that the enhancement is mainly due to its
mass being decoupled from the light quark mass scale was pointed out a long time ago [2].

2. Al = 1/2 rule on the lattice

In the approach of Ref. [1] the direct computation of K — w7 amplitudes on the lattice is
bypassed by considering the K — © and K — vacuum transitions, which are then related to the
physical ones by means of Chiral Perturbation Theory (ChPT) [3].

A crucial part of the strategy is to keep an active charm quark, such that the theory has a softly
broken SU (4)1, x SU(4)g chiral symmetry. The role of the charm quark in the dynamics underlying
the A = 1/2 rule for kaon decays can then be studied by monitoring the dependence of kaon decay
amplitudes on the charm quark mass m,.. This is done in two steps: i) Set m. equal to the light
quark masses, i.e. m, = my = my; = m, (GIM limit). ii) Increase the charm quark mass towards its
physical value.
After the Operator Product Expansion (OPE) to lowest order the AS = 1 effective weak Hamiltonian
H,, is given by
&
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where V,,, are CKM-matrix elements and k?z the Wilson coefficients, which incorporate all the
high-energy effects. The four-quark operators Qf are given by

07 = {(GyuP-u) iy P-d) + (Syu P-d) (iyu P-u) } — (u — c). (22)

Under SU(4), the operator Qf (Q;) transforms as an irreducible representation of dimension
84(20), while both Q7 are singlets under SU(4)g. In the case of a diagonal mass matrix the
operators in are of the form

05 = (m; —m) {my(5P,d) +my(5P_d)}, (2.3)

where P, = 1/2(1+ 7s). Even though Qét do not contribute to the physical matrix elements, they
are allowed by the underlying symmetries as a part of the effective Hamiltonian and mix with Qf
under renormalization if m. # m,,.

At leading order in ChPT, the ratio of amplitudes |Ao/A5| is related to a ratio of low-energy con-
stants (LECs) gf via

Ag I (1 3g/

-7 G1a) @4
Here, the LECs gf are the couplings multiplying the counterparts of the four-quark operators Qf
in the effective Hamiltonian of the low-energy theory [3]. They can be determined by computing
suitable correlation functions of Q?E and in in LQCD and matching them to the corresponding
expressions in ChPT. The matching can be performed either in the standard p-regime of ChPT, or
in the e-regime. The advantage of the latter is that no new LECs appear at next-to-leading order,
which a priori may allow for a better control of systematic uncertainties.
The complicated renormalization and mixing patterns of four-fermion operators usually encoun-

tered in lattice formulations can be avoided through the use of the Neuberger-Dirac (overlap) oper-
ator [4], 1.e.

D:é(l—&), A=1+s—aDy, a:liﬂ, 5| < 1. 2.5)
Here, Dy refers to the Wilson-Dirac operator and the tunable parameter s allows to improve the
locality properties of D. Introducing the modified quark field ¥ = (1 — @D/2)¥ guarantees that
the renormalization and mixing of Qli are like in the continuum theory and, in particular, that no
mixings with lower-dimensional operators with enhanced divergences occur [5]. The combined
use of a SU (4)-flavor symmetry and chiral fermions, thus, leaves one with logarithmic divergences
only.

The use of dynamical overlap fermions is computationally very expensive, and the first studies
(e.g. [6,7]) have been carried out in the quenched approximation. Intrinsic QCD contributions to
the enhancement can be isolated by determining gli in the theory with m, = my = m; = m.. In this
case only the figure “8”-diagram (left of Figure 1) has to be dealt with. A moderate enhancement
is observed [7], namely

Ag
— | ~6. 2.6
Azﬂ 2.6)

This is not large enough to explain the experimental ratio but is already significant and cannot be
attributed to penguin diagrams.
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N

Figure 1: Diagrams to be computed: “8”-diagram (left) and “eye”-diagram (right).

In the next step |Ao/Az| has to be monitored as m, departs from the mass-degenerate limit towards
its physical value. Thereby, the specific contribution of the charm quark to the Al = 1/2 rule can
be investigated in detail. However, as soon as m, # m, a new kind of diagram, referred to as
“eye”-diagram (right of Figure 1), emerges and spoils the statistical signal. Its correlation function
consists of two terms, a “color-connected”(con) and a “color-disconnected”’(dis) term which read

Cott o< (Tr { yuP-S(2,%) YoP-S (x,3) 0 P-S (,2) YuP-Suse(2,2) } ) (2.7)
Co o (Tr{ yuP-S(x,2) " P-S(x,y) P-S(3,2) } Tr { YuP-S,/c(2,2) } ) - (2.8)

The challenge consists in the closed quark loop S,,/.(z,z) with either a charm quark (c) or an up
quark («) running through it. By means of conventional techniques of computing quark propagators
involving point sources, it is not possible to sample over the coordinate z and noise dominates over
the statistical signal. More sophisticated “all-to-all” propagators have to be developed to compute
these contractions.

3. All-to-all propagators

At low quark masses the numerical computation of correlation functions is hampered by huge
statistical noise. In the spectral representation the quark propagator can be written as
L e v @i ()
Sx,y)==) ———=== 3.1
CN =g X" m (3.1)
where v denotes eigenmodes and A the corresponding eigenvalues. If the quark mass m is of
the same order as the gap, AL = A;; — A;, between two consecutive eigenvalues, the low-lying
spectrum is discrete and the lowest modes have a big weight in the sum. Space-time fluctuations in
these eigenfunctions can lead to large fluctuations in observables. Low-mode averaging (LMA) [8,
9] has been shown to be a suitable tool to reduce these fluctuations. It amounts to separating the
Ny lowest eigenmodes from the rest, i.e. to truncating the sum over all eigenmodes. Consequently,
the quark propagator decomposes into a “low”(S') and “high”(S") part
ow 1—
1 Y2 v;(x) @ (y)

S(x,y):Sl(x,y)+Sh(x,y):Vzﬁ—i—Sh(x,y). (32)

1

The latter lives in the orthogonal complement of the subspace spanned by the n;,,, lowest modes.
Decomposing the quark propagator into a low-mode and high-mode propagator results in the split-
ting of the correlation function as well. So, a common three-point function which consists of 4
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propagators is split into 5 terms with in total 16 distinct contributions. Schematically,

C3pt — Cllll +Clllh _|_Cllhh +Clhhh _|_Chhhh (33)
# diagrams = 1 4 6 4 1

where the upper indices / and / denote the number of low-mode and high-mode propagators ac-
cording to the decomposition of eq. (3.2). The statistical signal for the correlation function is
enhanced by exploiting translational invariance in the terms with at least one low-mode propagator.
Since the latter is known for all space-time locations these contributions can be sampled over many
different source points. Furthermore, to improve the statistical signal at fixed computational cost
it turned out that instead of merely increasing ny,,, it is advantageous [10] to keep ny,,, reasonably
small and construct “extended” all-to-all propagators, which allows to sample also over the high
part of the propagator. Here, the mode itself is used as a source for an additional inversion. More
precisely, taking the source to be the left-projected eigenmode (Yo P-)v; at the fixed timeslice t = ty,
the solution vector S reads

3
S hory = (1) LS 3t (0P wi(Finy). 34
¥y

where an average over the spatial coordinate y is automatically performed. LMA with extended
all-to-all or conventional point-to-all propagators for the “high” part " is crucial to obtain a signal
in the e-regime even for the simple case of the figure “8”-diagram.

The “eye”-diagram, however, which is required when decoupling the charm quark mass is still
dominated by statistical noise. To reduce its variance, stochastic volume sources (SVS) [11] and
dilution [12] techniques are used to estimate S” stochastically. That is, low-mode averaging is com-
bined with stochastic sources (LMA + SVS). The resulting all-to-all propagators allow to average
over the intersection point of the 4-quark lines, i.e. the point where two quark propagators attach
to the closed quark loop.

To compute stochastic all-to-all propagators an ensemble of » = 1,...,N; random noise vectors,
{n(’) (xo,Sc')}, is generated for each gauge configuration. These source vectors are created by as-
signing independent random numbers to all components, i.e. to all lattice sites, color and Dirac

indices and have to obey the following two conditions!

(N8(x0,3)) e = lim — Y (1)), (x0,%) =0 (3.5)

(naEx0)(n")pG.v0) )

Then one can invert for each of these noise vectors and obtain an estimate for the full propagator
(@4 (n"0))

where the individual solution for each of the N, noise vectors is given by

(@1)5 ) =Y Y 862 (")} (). (3.8)

z Y

= By OiyOrp 5P, (3.6)

ST

= Sep(xy), (3.7)
C

ST

ILatin(Greek) letters denote color(spin) components.



The AI = 1/2 rule Eric Endress

An essential step towards reducing the intrinsic stochastic noise is the application of “dilution”.
In this work dilution is applied in spin, color and time, i.e. each of the N, noise vectors of the
ensemble has random entries only on one spin-color component of a single timeslice with all other
entries set to zero.

4. Results

A single quenched lattice is used to study the performance of LMA + SVS where volume
sources are used for estimating S” stochastically. The bare coupling constant is 8 = 6/ g% =5.8485
which corresponds to a lattice spacing a ~ 0.12 fm, and a volume Va~* = 163 x 32. The light bare
quark mass is amy;g,; = 0.02, resulting in a pion mass my; ~ 320 MeV. Two charm quark masses
are considered: am, = 0.04 = 2 X amy;gp; and am. = 0.2 = 10 X amy;4;,;. Twenty low-modes are
computed for each of the 120 quenched configurations. The volume sources are diluted in time,
spin and color. Stochastic estimators are used for the loop propagator and, if required, also for the
other propagators in order to be able to average over the position of the 4-quark line intersection.
By applying LMA the “eye”-diagram splits into 5 distinct terms grouped by the number of low-
mode propagators according to eq. (3.3). In the following ratios of these terms are shown. More
precisely, the ratios are defined by

C5 (o — 2o, [yo — z0l) £ C52' (1o — 2ol [yo — z0l)
C2(x0)C2(0)

R=(|x0 — 20!, [yo — z0]) = ; 4.1)
where C; is the two-point function of the left-handed current Jy = (‘i’yoPJi’).

The overall improvement of LMA+SVS compared to LMA is illustrated in Figure 2. It reveals that
LMA+SVS is effective for the terms consisting of 2 or 3 low-mode propagators. The variance is
reduced significantly, most notably when the charm quark in the closed loop is heavy. In the latter
case the absolute error of the sum of the 5 terms is roughly halved. For the term with a single low-
mode propagator the technique of LMA+SVS shows no significant improvement; presumably in
this case the use of multiple independent stochastic estimates for several high-mode parts increases
the intrinsic stochastic noise and the technique deteriorates its performance.

5. Summary and outlook

We have reported on the progress of our ongoing project to understand the role of the charm
quark and its associated mass scale in non-leptonic decays of kaons into two pions. When the
charm quark mass is decoupled from the light quark masses, it is hard to obtain statistical signals for
“eye”-diagrams. A combination of low-mode averaging and stochastic volume sources is applied
to cure this. We observe a significant variance reduction for several contributions, even though the
overall error remains sizable. In the next step of this project the results for the bare ratios will be
renormalized. To this purpose the contributions of the operators in have to be taken into account.
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Figure 2: Individual contributions to the ratios Ry classified by their number of low-mode propagators for
a light (top) and heavy (bottom) charm quark. Blue data points (displaced to the right for better visibility)
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