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We discuss the interactions of the two-Ω− baryon system in multiple spin channels with lattice
QCD. Lattice QCD is the only known technique for calculating low-energy hadronic observables
directly from the underlying theory of QCD. In addition to being an interesting hyperonic system
in its own right, the two-Ω− system also provides an ideal laboratory for exploring the interac-
tions of multi-baryon systems with minimal dependence on light quark masses. Previous model
calculations of the two-Ω− system have obtained conflicting results, which can be resolved by
lattice QCD. The lattice calculations are performed using two different volumes with L∼ 2.5 and
3.9 fm at mπ ∼ 390 MeV with a lattice spacing of as ∼ 0.123 fm. Using multiple interpolating
operators from a non-displaced source, we present scattering information for two ground state Ω−

baryons in both the S=0 and S=2 channels. For S=0, k cotδ is extracted at two volumes, which
leads to an extrapolated scattering length of aΩΩ

S=0 = 0.16±0.22 fm, indicating a weakly repulsive
interaction. Additionally, for S=2, two separate highly repulsive states are observed.
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Lattice QCD calculations have advanced to the point that scattering phenomena for multi-
hadron systems can be reliably calculated from first principles. Calculations performed with analy-
sis of two or more hadrons in a finite volume allow for phase shifts and potential bound states to be
studied non-pertubatively[1, 2]. In this proceeding, we discuss the Ω−Ω− system, which is poorly
understood experimentally due to the large mass and relatively short lifetime of the Ω−. Lattice
QCD calculations can predict phenomena in these systems and pinpoint signals for heavy ion scat-
tering experiments, such as STAR or ALICE. The ΩΩ system has not received as much theoretical
attention as its lighter hyperon counterparts, however within the last decade this system was studied
in the context of the chiral quark model[3], where it was found to prefer a bound ground state with
a binding energy of 116 MeV. A conflicting analysis[4] using the quark dislocation model finds
the system to be weakly repulsive. A model-independent lattice QCD calculation can address this
debate[5].

An attractive aspect of studying the ΩΩ system on the lattice is the fact that the system is be-
lieved to primarily depend on the physical strange quark mass as opposed to the unphysically large
light quark masses with which these lattice calculations are performed[6], implying a calculation
at the physical point should rely less on chiral extrapolations. Also, calculations involving only
the heavier strange quark are less computationally expensive and have better signal-to-noise. For
these reasons, the multi-Ω− system is the ideal laboratory for understanding nuclear interactions
(including tensor forces and s-wave three-baryon forces[7, 8]) directly from the lattice.

Lattice calculations are performed in Euclidean space, where the usual LSZ formalism only
holds at kinematic threshold[9]. As a result, scattering information has to be extracted by analyzing
energy shifts of hadrons in finite volume. For two hadrons (A and B) in a finite volume, the inter-
action momenta k at a given volume (V = L3) can be related to the two-particle interaction energy
∆E and the scattering phase shifts δ (k) by[1, 2]

E =
√

k2 +m2
A +
√

k2 +m2
B = ∆E +mA +mB

k cotδ (k) =
1

πL
S

((
kL
2π

)2
)

=−1
a
+

1
2

rk2 + ...

S(η) =
|j|<Λ

∑
j6=0

1
|j|2−η

−4πΛ (1)

where the value of k cotδ (k) extracted then has the normal effective range expansion.
The discretized lattice calculations with periodic boundary conditions also break the contin-

uum O(3) rotational symmetry to an octahedral subgroup. The spin-3/2 Ω− fermionic modes map
on to the lattice irrep H+ (S = 3/2). In this irrep, the interpolating operator overlapping the Ω−

baryon is given by[10]
Ωαβγ = εabcsa

αsb
β

sc
γ , (2)

where a, b, and c are color indices and α , β , and γ are spinor indices. Linear combinations
of Ωαβγ will produce Ω− interpolating operators in the correct irreducible representations of the
octahedral group. For non-displaced sources, and following Ref. [10], there are two embeddings
of the Ω− particle in the H+ irrep. In the non-relativistic limit, the first embedding maps onto
the upper two spinor components in the Dirac-Pauli basis, while the second maps onto the lower
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two components. As such, one expects larger overlap with ground state systems when dealing
with the first embedding. The s-wave states of the two Ω− system can be formed from a tensor
product of the ground state lattice irreps, and by forcing the system of two H+ baryons to be in a
relative s-wave the angular momentum of the resulting state will be entirely determined by the spin
combinations allowed. With the additional condition for an anti-symmetric wavefunction the two
Ω− baryons in an s-wave state can only have two non-trivial spin channels: S=0 (the A+

1 irrep) and
S=2 (the E+ and T+

2 irreps).
Due to the three degenerate valance quarks, the Ω− interpolating operator has the property that

exchanging two quarks leads to both a minus sign from permuting Grassman number and a minus
sign from exchanging indices in the epsilon tensor, which cancel, giving all Wick contractions the
same relative sign. It can be shown using this property that all contractions of the two-Ω− fall
into two distinct forms: ‘direct’ and ‘exchange’, as shown in Fig. 1. This drastically reduces the
computational cost due to matrix multiplication, decreasing the 6!=720 possible contractions of
two-Ω system by an order of magnitude.
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β

γ } Ωα’β’γ ’
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γ ’
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Figure 1: Quark contractions types used in the calculation including the (a) direct contributions and the (b)
exchange contributions.

For each correlation function, different source/sink smearing combinations are put through a
matrix-Prony algorithm as detailed in Ref. [11], which partially removes excited state contamina-
tion. Further enhancement of the ground state is accomplished by averaging different combina-
tions of embeddings. We also suppress excited states by projecting the momentum of individual
particle sinks to zero independently, which will remove excited states with nonzero back-to-back
momentum[12]. A fully correlated χ2 minimizing fit is then performed in the plateau region to
extract the ground state energy with errors.

Using Chroma[13], the configurations used were generated on uBGL while the propagator
inversions and contractions were performed on the Edge cluster with the QUDA GPU library[14],
both at LLNL. The configurations were anisotropic Wilson lattices using the tuning parameters
defined in Ref. [15]. The ensembles used were 203×256 (L∼ 2.5 fm) and 323×256 (L∼ 3.9 fm)
with mπ ≈ 390 MeV, as ∼ .1227 fm, and as/at ∼ 3.5.

The three lowest embedding combinations of the H+ irrep have significant overlap with the
ground state Ω−, and the effective mass plot for the sum of the three lowest embedding combina-
tions is shown in Fig. 2 for both the 203× 256 and the 323× 256 lattices. The lowest embedding
combinations for the S = 0 system result in the effective mass plots in Fig. 3, with the correspond-
ing energy shift of the two baryon system from ground state plotted in Fig. 4. The fit results for
each data set are shown in Table 1.

3



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
1
3
3

Omega Baryon Interactions with Lattice QCD Joseph Wasem

0 10 20 30 40 50 60
0.27

0.28

0.29

0.30

0.31

att

a t
m

H
+
,L
=

20

(a)

0 10 20 30 40 50 60
0.27

0.28

0.29

0.30

0.31

att

a t
m

H
+
,L
=

32

(b)

Figure 2: Effective mass plots for the H+ (S= 3
2 ) Ω− baryon calculated using (a) 203×256 and (b) 323×256

lattices.
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Figure 3: Effective mass plots for the A+
1 (S=0) two Ω− system calculated using (a) 203× 256 and (b)

323×256 lattices.
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Figure 4: Effective mass plots for ∆E for the A+
1 (S=0) two Ω− system calculated using (a) 203×256 and

(b) 323×256 lattices.
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Figure 5: Effective mass plots of the (a) E+ and (b) T+
2 irreps (the S = 2 two Ω− system) calculated using

the 203×256 lattice.

The effective mass plots for the S = 2 states are shown in Fig. 5. One can see that the two
S = 2 irreps achieve statistically separate lowest energy states, despite coupling to states with the
same set of quantum numbers, indicating that at least one (and possibly both) are failing to achieve
the correct ground state of the S = 2 two Ω− system. In both cases, the states achieved are at a
significantly higher energy level than for the S = 0 case, implying a much more repulsive channel,
as expected from Pauli exclusion arguments.

Table 1: Fit values and Energy Shifts for the Ω− systems (in dimensionless units, atE).
Irrep Lattice Size atE σE,stat. σE,sys. χ2/dof Q at∆E σ∆E,stat.

H+ 203×256 0.291501 0.000457 +0.000099
−0.000268 1.003 0.460

323×256 0.290001 0.000804 +0.000418
−0.000001 0.850 0.708

A+
1 203×256 0.586235 0.000843 +0.000091

−0.000348 1.105 0.327 0.00323 0.00124
323×256 0.583224 0.002002 +0.000577

−0.000680 1.086 0.350 0.00322 0.00257
T+

2 203×256 0.642961 0.007136 +0.002502
−0.005120 0.925 0.514 0.05996 0.00719

E+ 203×256 0.67256 0.00293 +0.00013
−0.00329 0.500 0.916 0.08956 0.00307

In the S = 0 two Ω− system, the data from two different volumes in Table 1 will allow for two
applications of Eq. 1 and, in combination with the effective range expansion, an extraction of the
scattering length a. In principle the range parameter r will also be extracted, however it will be
contaminated by higher order terms and is unreliable. For the S = 0 system the results are shown
in Fig. 6(a) along with the systematic and statistical errors. A distribution of the parameter a is
generated and shown in Fig. 6(b), with a resulting scattering length in the S=0 channel of

aΩΩ
S=0 = 0.16±0.22 fm. (3)

Note that the distribution fit to the data is that of a Lorentz distribution, where use of a normal
distribution would result in the quotation of too large an uncertainty.

From Fig. 6(a) one can see that the central value of k2 observed does not change apprecia-
bly between the two different volumes, and in Fig. 6(b) the distribution of the extracted scattering

5



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
1
3
3

Omega Baryon Interactions with Lattice QCD Joseph Wasem

0.0 0.5 1.0 1.5 2.0
-2

0

2

4

6

8

k2 Hfm-2L

-
kc

ot
H∆
L
Hf

m
-

1 L

(a)

-2 -1 0 1 2

aS=0
WW HfmL

Pr
ob

ab
ili

ty
D

en
si

ty

(b)

Figure 6: Plot of (a) kcotδ (with central value, statistical error (thick line), and statistical plus systematic
error (thin line)) and (b) the distribution of scattering lengths a for the S = 0 two Ω− system with a Lorentz
distribution.

length is strongly peaked at very small values, indicating a very weakly repulsive system. In-
deed, assuming natural sizes for the higher order range parameters the Lorentz distribution for the
scattering length provides a 79.5% chance that the system is repulsive and a 20.5% chance that
it is attractive. Additionally, the ∆E values in Table 1 are positive (repulsive) and small for both
203× 256 and 323× 256 lattices. Thus, from our current calculations, we find evidence that the
system is consistent with the weakly repulsive scenario in Ref. [4] and inconsistent with the deeply
bound state found in Ref. [3]. Ultimately, more calculations are required to acquire a full system-
atic error budget, but for the ΩΩ system these are expected to be small due to weak light quark
dependence.

These results provide an interesting complement to previous studies[12, 16, 17, 18] of hyperon
interactions, where many of the interactions have been found to be attractive and contain bound
states at mπ ∼390 MeV. The difference between the evidence for other bound hyperon states and
the conclusion in this work of a weakly repulsive ΩΩ state may simply reflect a much stronger
influence of light-quark dynamics in the valence sector of the ΛΛ and ΞΞ systems. Further studies
at different pion masses approaching the physical point are needed to gain a better understanding
of the similarities and differences of each of these systems.

This work was performed under the auspices of the U.S. DOE by LLNL under Contract No.
DE-AC52-07NA27344 and the UNEDF SciDAC Grant No. DE-FC02-07ER41457, and was par-
tially supported by LLNL LDRD 10-ERD-033.
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