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1. Introduction

A series of papers from recent years [1 – 4] examined the properties of gauge fields U as they
evolve down the gradient of a pure gauge action S towards their classical minimum. For any given
gauge configuration U , this defines a curve Vt in configuration space parametrized by a fictional
flow time t as

∂

∂ t
Vt (x,µ) =−g2

[
∂

∂x,µ
S(Vt)

]
Vt(x,µ),

with the boundary condition V0 (x,µ) = U (x,µ). This differential equation can be integrated nu-
merically and for infinitesimal values of ε one obtains

Vt+ε (x,µ) = exp
[
εT a

∂
a
x,µS(Vt)

]
Vt(x,µ),

with T a the generators of SU(3). The expectation value 〈Ot〉 of any observable O at flow time t is
defined as its expectation value on the ensemble of fields Vt . Any valid pure gauge action S can be
chosen, but these proceedings use the standard Wilson plaquette action.

While the curves Vt have a range of potential applications, one very practical observation is
that they define a reversible and analytical smearing scheme for configurations. For the Wilson
plaquette action used here, the numerical integration in this smearing scheme corresponds to a
number of infinitesimal stout smearing steps [5]. The dimensionful flow time t plays the rôle of a
reference scale and it was shown [4] that the fields Vt at finite flow time t are actually renormalized
to all orders in perturbation theory, promoting t to a proper renormalization scale.

The gradient flow can be used in any type of analysis for which one would normally require
a smearing procedure. There are several applications, however, that rely on the unique properties
of the gradient flow method – namely, its reversibility and analyticity. Since the flow trajectory is
renormalized, the renormalization group invariant integrated topological susceptibility V χT can be
determined directly from a calculation of the field theoretical topological charge Qt = Ft F̃t , with F
the QCD field strength tensor. On the other hand, by monitoring the value of the energy density
under the effect of flow equations, the renormalization group flow can provide a measure of the ef-
fective physical scale that t represents. In these proceedings, we will describe some results obtained
by using the gradient flow on configurations generated using twisted mass Wilson fermions [6] to
analyze its potential both for studying the topological properties of these configurations and for its
usage in setting the scale of the simulation.

2. Scale setting methodology

It has been suggested [2] that an unambiguous scale can be defined from the flow time t, using
the energy density Et . The latter can be defined simply from the plaquette, or from a symmetric
discretization of F . Both definitions agree in the continuum and we will refer to them as ‘naive’
and ‘symmetrized’, respectively. If we find the point where the dimensionless quantity t2Et reaches
a given value, e.g. t2

0 Et0 = 0.3, then
√

t0 is a well-defined gluonic length scale. To use t0 for scale
setting, it is important to control its lattice artifacts. In fact, it turns out that they can be rather
noticeable, as illustrated by the difference between curves based on the naive and symmetrized
energy density definitions in figure 1a. Since these artifacts appear mainly at small values of the
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Figure 1: A graphical comparison of the determination of scales from the gradient flow for an arbitrary
configuration with β = 1.90 and aµ = 0.025:

√
t0 on the left, w0 on the right. Insets show an enlarged

view of the area where the curves hit the reference value of 0.3 for the symmetrized plaquette definition (blue
line). The equivalent curve using the naive plaquette definition (red), which should differ by lattice artifacts,
deviates enough to not be present in the inset on the left, but is not significantly different on the right.

flow time, they do not necessarily interfere with the usage of the longer distance
√

t0 for scale
setting. Their presence does, however, introduce a discretization scheme dependence, such that the
measured value of t0 will only agree in the continuum limit.

To circumvent this issue, the BMW collaboration [7] proposed to use the quantity

Wt ≡ t
d
d t

(
t2Et

)
in order to fix the scale. Since this is sensitive to the slope of the energy density, rather than its
absolute value, the influence of the lattice artifacts at short flow times will all but vanish at the larger
flow times that are of interest for scale setting purposes (see figure 1b). The BMW collaboration
defined a reference scale w0 through the condition Ww2

0
= 0.3 and proceeded to determine its value

at physical quark masses in the continuum limit, using mΩ as the physical reference mass. In doing
so, they compared two different actions: an N f = 2+ 1 staggered action with two levels of stout
smearing and an N f = 2+1 Wilson clover action with two levels of HEX smearing. Both actions
showed a nearly flat continuum limit and a consistent extrapolation to w0 = 0.1755(18)stat(04)sys.

3. Lattice scales

We set out to check the properties of w0 using our N f = 2+1+1 twisted mass ensembles [6]
at three distinct values of the lattice gauge coupling β = 1.90, 1.95 and 2.10. Our focus is on its
potential as a precise physical scale largely unaffected by systematic errors. A first check of its
suitability for such an application is given by the measurable effects of finite volume on its value.
Here, we reproduced the earlier observation [7] of very minor finite volume effects in w0. An
explicit comparison of ensembles at differing volumes, but otherwise identical parameters showed
effectively negligible differences for values of mpsL as low as 2.5. Since this value is smaller
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than what is generally considered practical to extract most other observables, it appears that finite
volume effects in w0 should not generally be a concern.

Another potential issue, affecting the overall precision to which w0 could be determined, is
the auto-correlation. The energy density is not particularly prone to large auto-correlations per se,
but the gradient flow should expose the potentially more correlated physics at longer distances. In
fact, as figure 2 demonstrates, correlations tend to be quite high for the action density evaluated at
finite flow time. The magnitude of the effect does depend on the details of the ensemble, but appear
systematically for all ensembles. The upshot of this is that the small systematic uncertainties in w0

ensemble A30.32

(a) β = 1.90, aµ = 0.030, V = 323×64

ensemble D30.48

(b) β = 2.10, aµ = 0.030, V = 483×96

Figure 2: Integrated auto-correlations (IAC) in units of trajectories measured on two arbitrary ensembles
as a function of the flow time for three observables: the plaquette, symmetrized plaquette and topological
charge. Auto-correlations tend to rise sharply as the influence of UV scales is suppressed, exposing a
much higher degree of correlation than that obtained for the unsmeared observables. Notably, the auto-
correlations tend to be at least as large as those found for the topological charge.

could be dominated by underestimated statistical ones. While the determination of w0 can be done
to very high accuracy on each configuration, as can be seen from inset of figure 1b, this precision
may not translate to a high precision for the ensemble average. In fact, using a standard binning
procedure to estimate the true statistical errors, it appears that the inherent precision of w0 is not
too different from that of r0 determined on the same ensemble.

For a mass independent scale setting, it would be preferable to have the value of w0 in the
chiral limit or at the physical point. In figure 3, we have plotted the values of w0 for all ensembles
against m4

ps, since this was found to give good linear fits for previous extrapolations of r0 [6]. To
compare data on different lattice scales, values were rescaled by the respective chiral limits of such
a fit. Results for w0 don’t vary drastically, as the maximum relative change in value of w0 is less
then 6% over the full range of masses. But given the spread of the points and the size of their errors,
there seems to be no monotonous, or even smooth, functional form that would produce a reasonable
fit. This, combined with the large auto-correlations described earlier, leads us to conclude that we
are most likely underestimating the errors substantially. Either way, using a chiral limit extracted
in this way does not seem reasonable. We therefore follow an alternative procedure, performing an
NLO SU(2) chiral extrapolation in the pion sector with all quantities expressed in units of w0 as
measured on each ensemble (figure 4a). This provides a sensible extrapolation while avoiding the
large uncertainties from a separate chiral extrapolation of the scale. By determining the physical
ratio of the pion decay constant and pion mass squared at each lattice spacing, this procedure allows
us to extract the value of w0 at the physical point for each lattice spacing separately.
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beta 1.90
beta 1.95
beta 2.10

(a) Chiral extrapolation of w0 fps.

c

(b) Continuum extrapolation of w0 fps.

Figure 4: (a) The chiral extrapolation of w0 fps according to SU(2) χPT to NLO. A physical value for this
quantity (indicated by an asterisk) is extracted by matching to the physical ratio mps/ fps. (b) The continuum
extrapolation of three lattice scales, as determined from the value of the pion decay constant at the physical
point. Results have been rescaled by the continuum extrapolation value f c

ps to allow for a comparison of
the relative size of lattice artifacts. The value of the lattice spacing was obtained from the pion mass at the
physical point.
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Figure 3: Measurements of w0 per lattice spacing, rescaled by
the results from linear chiral extrapolation in m4

ps similar to the
extrapolation of r0 in [6].

Figure 4a shows that the phys-
ical values of w0 fps vary appre-
ciably between the different lat-
tice spacings. The magnitude of
these lattice artifacts can be esti-
mated from a continuum extrap-
olation of w0 fps. We show this
in figure 4b, together with results
from an identical analysis in terms
of the scales

√
t0 and r0. Since

tuning to maximal twist gives our
twisted mass fermions an auto-
matic O(a2) improvement, a linear
extrapolation in the lattice spacing
squared should be appropriate to

estimate leading order lattice artifacts. The quality of this extrapolation is good for w0, whereas the
fits are somewhat poorer for both r0 and

√
t0. All extrapolations are rescaled by their continuum

value, to expose the deviations on identical scales.
The scale w0 was introduced to designed to lack the impact of lattice artifacts found in

√
t0

and it is clear that they are indeed much less pronounced. However, we do not reproduce the
near absence of lattice artifacts reported by the BMW collaboration [7]. In fact, our lattice artifacts
appear to be smaller for r0. The explanation may lie in the differences between the different actions
used in both studies. One possible cause could be the absence of smearing in our setup, but factors
as diverse as the twisted mass formalism, the use of an Iwasaki gauge action or the absence of
clover improvement could all be of influence. The impact of these different factors in general can
only be estimated once results using a wider range of actions become available. It is also worth
pointing out that the origin of the deviations may even be a more subtle interplay between w0
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and other observables used in our analysis. In this case, though, it is not clear why the otherwise
identical analysis using r0 would be impacted less.

Using the value of w0 fps determined in the continuum limit to obtain a physical value for w0,
gives a preliminary value of w0 = 0.1782 fm. The current analysis is not sufficiently sophisticated
to provide a reliable error estimate on this number, but since it already lies within 1.5σ of the value
of w0 = 0.1755(18)stat(04)sys fm provided by the BMW collaboration, it should be consistent with
it.

4. Topological susceptibility

The gradient flow allows also for an efficient calculation of the topological susceptibility χT

via a measurement of Ft F̃t on the evolved lattices. This particular method of calculation should
provide the benefit that, through the renormalized nature of the field for any t 6= 0, we should get
immediate access to the renormalization group invariant observable V χT . This seems to be born
out by the behavior of the observable as a function of the flow time shown in figure 5a. Once the
gradient flow has progressed sufficiently far, χT becomes independent of the flow time, i.e. of the
renormalization scale.

We plotted our measurements for χT for a number of ensembles at our two finest lattice spac-
ings versus the pion mass squared in figure 5b. A suppression of the topological susceptibility

(a) χT versus flow time. (b) χT versus the pion mass squared.

Figure 5: The value of r0χT calculated from Ft F̃t on Vt . (a) As a function of the flow time for various bare
quark masses at β = 1.95 at fixed lattice volume. (b) As a function of the pion mass squared for two values
of β .

with decreasing pion mass is expected, but this is not yet obvious from the current data. It should
be noted that the errors are still large enough to allow for a downwards trend, even while auto-
correlations may be underestimated. There may also still be remnant lattice artifacts influencing
these data. If so, those could be partly disentangled through measurements of χT by using a differ-
ent methodology, such as in [8]. In order to enhance discriminatory power of the current results, it
would be beneficial to implement variance reduction methods such as those used in [9]. It would
also be very valuable to obtain additional data closer to the chiral limit.

5. Conclusions

The gradient flow method is a continuous and invertible scheme for smoothing configurations,
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based upon a first order homogeneous differential equation of the gauge action. We have imple-
mented and tested the gradient flow method on a range of N f = 2+ 1+ 1 twisted mass Wilson
fermion ensembles produced by the ETM Collaboration [6].

As a first practical application of the gradient flow, we tested its use in scale setting, focusing
on the w0 scale recently proposed by the BMW collaboration [7]. While this scale can be deter-
mined precisely and unambiguously on a configuration by configuration basis, the gradient flow
procedure exposed large auto-correlations in the energy density, implying that the statistical errors
are easily underestimated in these quantities and subsequently in w0.

The use of w0 instead of t0 appears to dramatically decrease discretization artifacts, but they
do remain noticeable. This differs from the findings of the BMW collaboration for both fermion
actions discussed. The cause of this discrepancy cannot be determined from present data alone.
It may rest in the difference between the actions used or, with lesser likelihood, be somehow in-
troduced through another observable used in our analysis. A continuum extrapolation using fπ

to set the scale, however, produces a value consistent with the value of w0 found by the BMW
configuration using the Ω mass as the physical scale.

Our attempts to use the renormalizing properties of the gradient flow to extract estimates of the
topological susceptibility χT met with success. The average of χT stabilizes after a short flow time
for all ensembles studied. The current results are not yet sufficient to draw any firm conclusions on
the behavior of χT towards the chiral limit. This situation could be probably be improved by the
implementation of a variance reduction scheme, as well as additional data towards the chiral limit.

References

[1] M. Lüscher, Trivializing maps, the Wilson flow and the HMC algorithm, Commun. Math. Phys. 293
(2010) 899.

[2] M. Lüscher, Properties and uses of the Wilson flow in lattice QCD, JHEP 1008 (2010) 071.

[3] M. Lüscher, Topology, the Wilson flow and the HMC algorithm, PoS LATTICE 2010 (2010) 015.

[4] M. Lüscher and P. Weisz, Perturbative analysis of the gradient flow in non-abelian gauge theories,
JHEP 1102 (2011) 051.

[5] C. Morningstar and M. J. Peardon, Analytic smearing of SU(3) link variables in lattice QCD,
Phys. Rev. D 69 (2004) 054501.

[6] R. Baron et al., Light hadrons from lattice QCD with light (u,d), strange and charm dynamical
quarks, JHEP 1006 (2010) 111.

[7] S. Borsanyi et al., High-precision scale setting in lattice QCD, JHEP 1209 (2012) 010.

[8] K. Cichy et al. Topological susceptibility and chiral condensate with N f = 2+1+1 dynamical
flavors of maximally twisted mass fermions, PoS LATTICE 2011 (2011) 102.

[9] A. Bazavov et al., Topological susceptibility with the asqtad action, Phys. Rev. D 81 (2010) 114501.

7


