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Transverse momentum-dependent parton distributions (TMDs) relevant for semi-inclusive deep

inelastic scattering (SIDIS) and the Drell-Yan process canbe defined in terms of matrix elements

of a quark bilocal operator containing a staple-shaped Wilson connection. Starting from such a

definition, a scheme to determine TMDs in lattice QCD is developed and explored. Parametrizing

the aforementioned matrix elements in terms of invariant amplitudes permits a simple transfor-

mation of the problem to a Lorentz frame suited for the lattice calculation. Results for the Sivers

and Boer-Mulders transverse momentum shifts are obtained using ensembles at the pion masses

369MeV and 518MeV, focusing in particular on the dependenceof these shifts on the staple

extent and a Collins-Soper-type evolution parameter quantifying proximity of the staples to the

light cone.
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1. Introduction

In the description of nucleon structure, transverse momentum-dependent parton distribution
functions [1] (TMDs) play a role complementary to generalized parton distributions (GPDs), which
encode information about the transverse spatial distribution of partons. As detailed further below,
the definition of TMDs involves a number of subtleties not encountered in the case of GPDs, which
also must be taken into account in formulating corresponding lattice QCD calculational schemes.
Cast in a Lorentz frame in which the nucleon of massmN propagates with a large momentum in
3-direction,P+ ≡ (P0 + P3)/

√
2≫ mN, the quark momentum components scale such that TMDs

are principally functionsf (x,kT) of the quark longitudinal momentum fractionx = k+/P+ and
the quark transverse momentum vectorkT , with the dependence on the componentk− ≡ (k0 −
k3)/

√
2 ≪ mN becoming ignorable in this limit.f (x,kT) will thus be regarded as having been

integrated overk−. TMDs also depend on various further parameters, specified below as needed.
This work focuses on casting the phenomenological definition of TMDs into a form useful for
lattice QCD, and presenting exploratory results for selected TMD observables. This is facilitated
by writing the fundamental TMD correlator introduced belowin terms of invariant amplitudes,
so that the problem can be transformed to a Lorentz frame in which rotation to Euclidean lattice
time becomes simple. In particular, time-reversal odd (T-odd) observables such as the Sivers and
Boer-Mulders shifts will be discussed. A detailed account of this work was presented in [2].

2. Definition of TMD observables

The fundamental correlator defining TMDs is of the form

Φ[Γ](x,kT ,P,S, . . .) =
∫

d2bT

(2π)2

∫
d(b·P)

(2π)P+
exp(ix(b·P)− ibT ·kT)

Φ̃[Γ]
unsubtr.(b,P,S, . . .)

S̃ (b2, . . .)

∣∣∣∣∣
b+=0

(2.1)

with
Φ̃[Γ]

unsubtr.(b,P,S, . . .) ≡ 1
2
〈P,S| q̄(0) Γ U [0, . . . ,b] q(b) |P,S〉 (2.2)

whereSdenotes the spin of the nucleon andΓ stands for an arbitraryγ-matrix structure. Heuristi-
cally, the Fourier-transformed bilocal quark bilinear operator counts quarks of momentumk in the
nucleon state, withΓ controlling the specific spinor components involved. However, gauge invari-
ance additionally enforces the introduction of the gauge connectionU , the precise path of which
is not specified at this point; its choice will be guided by thephysical process under consideration.
In turn, the presence ofU introduces divergences additional to the wave function renormalizations
of the quark operators (this is indicated by the subscript “unsubtr.”); these divergences accordingly
must be compensated by the additional “soft factor”̃S . Here,S̃ does not need to be specified in
detail, since only appropriate ratios in which the soft factors cancel will ultimately be considered.
Finally, Φ[Γ](x,kT ,P,S, . . .) is, as noted further above, a function only of the three quarkmomentum
components contained inx andkT , whereas the small componentk− is integrated over; thus, in its
Fourier transform, the conjugate componentb+ is set to zero, as written in (2.1).

Decomposing the correlatorΦ[Γ](x,kT ,P,S, . . .) into the relevant Lorentz structures yields the
TMDs as coefficient functions. The treatment below will focus on the two leading-twist TMDs
which are odd under time reversal, namely, the Sivers function f⊥1T and the Boer-Mulders function
h⊥1 . The former characterizes the unpolarized distribution ofquarks in a transversely polarized
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nucleon, whereas the latter characterizes the distribution of transversely polarized quarks in an
unpolarized nucleon. Nonvanishing effects in these channels require a mechanism which breaks
time-reversal invariance. The correlators relevant for the aforementioned TMDs are

Φ[γ+] = f1−
[

εi j kiSj

mN
f⊥1T

]

odd
(2.3)

Φ[iσ i+γ5] = Sih1 +
(2kik j −k2

Tδi j )Sj

2m2
N

h⊥1T +
Λki

mN
h⊥1L +

[
εi j k j

mN
h⊥1

]

odd
(2.4)

whereΛ denotes the nucleon helicity (i.e.,S+ = ΛP+/mN, S− = −ΛmN/2P+).
Up to this point, no reference has been made to a physical process which may be parametrized

by the TMDs. However, the usefulness of a definition of TMDs iscontingent upon such a con-
nection being possible. This requires a factorization framework which allows one to separate the
description of the physical process into the hard, perturbative vertex, a TMD encoding the structure
of the nucleon, and further components such as fragmentation functions describing the hadroniza-
tion of the struck quark. In general, the possibility of a factorization of this kind is not guaran-
teed [3]. However, for certain processes, including semi-inclusive deep inelastic scattering (SIDIS)
and the Drell-Yan (DY) process, factorization arguments have indeed been constructed, one pos-
sible approach having been advanced, e.g., in [4–6]. Fig. 1 schematically exhibits the principal
elements involved in a description of SIDIS. One particularly noteworthy aspect is the final-state
gluon exchanges between the struck quark and the nucleon remnant. These final state effects break
time-reversal invariance and thus lead to nontrivial T-oddTMDs. At a formal level, a resummation
of these gluon exchanges in the spirit of an eikonal approximation yields a Wilson line approxi-
mately following the trajectory of the struck quark, close to the light cone. This motivates a specific
choice for the gauge connection between the quark operatorsin (2.2). Namely, parallel Wilson lines
are attached to both of the quark operators, extending to large distances along a directionv close
to the light cone; at the far end, these lines are connected bya Wilson line in theb direction to
maintain gauge invariance. The result is a staple-shaped connectionU [0,ηv,ηv+b,b], where the
path links the positions in the argument ofU with straight line segments, andη parametrizes the

length of the staple. Formally, thus, it is
the introduction of the additional vectorv
which breaks the symmetry under time re-
versal and makes nonvanishing Sivers and
Boer-Mulders effects possible.

At first sight, the most convenient
choice for the staple directionv would seem
to be a light-like vector. However, beyond
tree level, this introduces rapidity diver-
gences which require regularization. One
advantageous way to accomplish this is
to take v slightly off the light cone into
the space-like region [4, 5], with perturba-
tive evolution equations governing the ap-
proach to the light cone [6]. Within this
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Figure 1: Illustration of the elements of SIDIS factor-
ization. The lower shaded bubble represents the struc-
ture parametrized by TMDs.
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scheme, a “modified universality” has been established, i.e., common TMDs describing both SIDIS
and DY, except that in the DY process, it is initial state interactions which play a crucial role;
accordingly, the staple directionv is inverted and the T-odd TMDs acquire a minus sign. A scheme
in which v (along with the quark operator separationb) is generically space-like is also attractive
as a starting point for the development of the lattice QCD calculation, as will be discussed further
below. A useful parameter characterizing how closev is to the light cone is the Collins-Soper
evolution parameter̂ζ = v·P/(|v| |P|), in terms of which the light cone is approached forζ̂ → ∞.

The correlator (2.2) can be decomposed in terms of invariantamplitudesÃiB. Listing only the
components relevant for the Sivers and Boer-Mulders shifts,

1
2P+

Φ̃[γ+]
unsubtr. = Ã2B + imNεi j biSj Ã12B (2.5)

1
2P+

Φ̃[iσ i+γ5]
unsubtr. = imNεi j b j Ã4B−SiÃ9B− imNΛbi Ã10B +mN[(b·P)Λ−mN(bT ·ST)]biÃ11B . (2.6)

These amplitudes are useful in that they can be evaluated in any desired Lorentz frame, including
one particularly suited for the lattice calculation. On theother hand, in view of (2.3) and (2.4), they
are clearly closely related to Fourier-transformed TMDs. Performing the corresponding algebra,
and quoting only the components necessary for defining the Sivers and Boer-Mulders shifts below,

f̃ [1](0)
1 (b2

T , ζ̂ , . . . ,ηv·P) = 2Ã2B(−b2
T ,b·P = 0, ζ̂ ,ηv·P)/S̃ (b2, . . .) (2.7)

f̃⊥[1](1)
1T (b2

T , ζ̂ , . . . ,ηv·P) = −2Ã12B(−b2
T ,b·P = 0, ζ̂ ,ηv·P)/S̃ (b2, . . .) (2.8)

h̃⊥[1](1)
1 (b2

T , ζ̂ , . . . ,ηv·P) = 2Ã4B(−b2
T ,b·P = 0, ζ̂ ,ηv·P)/S̃ (b2, . . .) (2.9)

where the generic Fourier-transformed TMD is defined as

f̃ [1](n)(b2
T , . . .) = n!

(
− 2

m2
N

∂b2
T

)n∫ 1

−1
dx

∫
d2kT eibT ·kT f (x,k2

T , . . .) . (2.10)

ThebT → 0 limit formally yields kT -moments of TMDs. However, this limit contains additional
singularities, which one can view as being regulated by a finitebT . Here, results will only be given
at finite bT . Note the presence of the soft factors̃S on the right-hand sides of (2.7)-(2.9). One
can construct observables in which the soft factors cancel by normalizing the (Fourier-transformed)
Sivers and Boer-Mulders functions (2.8) and (2.9) by the unpolarized TMD (2.7), which essentially
counts the number of valence quarks. Thus, one defines the “generalized Sivers shift”

〈ky〉TU(b2
T , . . .) ≡ mN

f̃⊥[1](1)
1T (b2

T , . . .)

f̃ [1](0)
1 (b2

T , . . .)
= −mN

Ã12B(−b2
T ,0, ζ̂ ,ηv·P)

Ã2B(−b2
T ,0, ζ̂ ,ηv·P)

(2.11)

which is the regularized, finite-bT generalization of the “Sivers shift”

mN
f̃⊥[1](1)
1T (0, . . .)

f̃ [1](0)
1 (0, . . .)

=

∫
dx

∫
d2kT kyΦ[γ+](x,kT ,ST = (1,0))∫

dx
∫

d2kT Φ[γ+](x,kT ,ST = (1,0))
, (2.12)

which, in view of the right-hand side, formally represents the average transverse momentum of
unpolarized (“U ”) quarks orthogonal to the transverse (“T”) spin of the nucleon, normalized to the
corresponding number of valence quarks. In the interpretation of (2.12), it should be noted that the
numerator sums over the contributions from quarks and antiquarks, whereas the denominator con-
tains the difference between quark and antiquark contributions, thus giving the number of valence
quarks. Note furthermore that ratios of the type (2.11) alsocancelΓ-independent multiplicative
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wave function renormalization constants attached to the quark operators in (2.2) at finite physical
separationb. Similar to (2.11), one can also define the generalized Boer-Mulders shift

〈ky〉UT(b2
T , . . .) = mN

Ã4B(−b2
T ,0, ζ̂ ,ηv·P)

Ã2B(−b2
T ,0, ζ̂ ,ηv·P)

. (2.13)

3. Lattice evaluation and results

The formal framework laid out above provides all the necessary elements for a lattice QCD
evaluation of generalized shifts such as (2.11) and (2.13).The path towards these observables
proceeds via the calculation of nucleon matrix elements of the type (2.2) and subsequent decompo-
sition into invariant amplitudes, as given in (2.5) and (2.6). This requires a framework in which the
four-vectorsb andv are generically space-like: The standard scheme for obtaining nucleon matrix
elements such as (2.2) operates with (ratios of) Euclidean space-time correlators, in which evolu-
tion in Euclidean time serves to suppress nucleon excited states between, on the one hand, nucleon
source and sink and, on the other hand, the operator insertedat an intermediate Euclidean time. In
this setting, only matrix elements of operators which are defined at a single Minkowski time are
straightforward to evaluate; finite Minkowski time separations in the operator cannot be directly
accomodated on the Euclidean lattice. Only if all parts of the matrix element under consideration
can be evolved in time to a single instant does rotation between Euclidean and Minkowski space
become trivial. Consequently, lattice evaluation of the matrix element (2.2) requires generically
space-likeb andv, since only then is there no obstacle to boosting the problemto a Lorentz frame
in which b andv are purely spatial, and calculating̃Φ[Γ]

unsubtr.in that frame. The results extracted for
the invariant amplitudes̃AiB are then immediately valid also in the original frame in which (2.2)
was initially defined, thus completing the determination ofquantities of the type (2.11) and (2.13).

Since, in a numerical lattice calculation, the staple extent η necessarily remains finite, two
extrapolations must be performed from the generated data, namely, the one to infinite staple length,
η → ∞, and the extrapolation of the staple direction towards the light cone,ζ̂ → ∞. As shown be-
low, the former extrapolation is under control for a range ofparameters used in this work, whereas
the latter extrapolation presents a formidable challenge.The main limitation in this respect is the
set of nucleon momentaP accessible with sufficient statistical accuracy. In the following, only data
for the isovector,u− d quark combination will be shown, since in this channel, couplings of the
operator insertion to disconnected quark loops in the nucleon cancel. Such disconnected contri-
butions have not been evaluated. Calculations were performed on three MILC 2+1-flavor gauge
ensembles [7] with a lattice spacing ofa = 0.12fm, corresponding to pion massesmπ = 369MeV
andmπ = 518MeV, with two lattice sizes used in the former case, 203 × 64 and 283 × 64. For
mπ = 518MeV, the lattice size is 203 × 64. The heavier pion mass ensemble, fraught with less
statistical uncertainty, provides the largestζ̂ value, namely,̂ζ = 0.78.

Figs. 2 and 3 show representative results for the generalized Sivers and Boer-Mulders shifts
(2.11) and (2.13). Fig. 2 (left) displays the dependence of the Sivers shift on the staple extent for a
given quark separationbT and a given staple direction characterized byζ̂ . The T-odd behavior of
this observable is evident, withη → ∞ corresponding to the SIDIS limit, whereasη →−∞ yields
the DY limit. The data level off to approach clearly identifiable, stable plateaux as the staple length
grows. The limiting SIDIS and DY values, represented by the open symbols, are extracted by
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Figure 2: Dependence of the generalized Sivers shift on the staple extent (left) and on the quark separation
bT in theη → ∞ SIDIS limit (right); from [2].
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Figure 3: Results for Sivers and Boer-Mulders shifts as a function ofζ̂ for all ensembles; from [2].

imposing antisymmetry inη , allowing one to appropriately average theη → ±∞ plateau values.
Fig. 2 (right) summarizes the results for the Sivers shift inthe SIDIS limit for differentbT at a
given ζ̂ , where the shaded area below|bT | ≈ 0.25fm indicates the region where the results may be
significantly affected by finite lattice cutoff effects.

Fig. 3 summarizes the dependence of the Sivers and Boer-Mulders shifts on the Collins-Soper
evolution parameter̂ζ , for all three ensembles considered. The quark separation|bT | is kept fixed.
In the left-hand panel, the full Sivers shift data are represented by the filled symbols; the empty
symbols correspond to a certain partial contribution whichwill not be discussed further here; for
details, cf. [2]. The signal for the shifts quickly deteriorates as the nucleon momentumP, and thus
ζ̂ , is increased. No clear trend can be identified at the presentlevel of accuracy aŝζ rises, and
connecting with perturbative evolution equations at largeζ̂ will clearly represent the most difficult
challenge for the present approach. Within the (sizeable) uncertainties, no significant variation can
be discerned as one changes the pion mass or the spatial extent of the lattice. In the isovector
flavor channel displayed, the signal for the Sivers shift is of higher quality than the one for the
Boer-Mulders shift. One reason for this is that, if one separates theu- andd-quark contributions,
the Sivers shifts in the two cases are of opposite sign (thus reinforcing each other in theu− d
difference), whereas the Boer-Mulders shifts are of the same sign, thus canceling each other to
some extent. It should be remarked that the lattice results obtained in this work are compatible with
phenomenological analyses of experimental SIDIS data [8, 9], in spite of the variety of systematic
effects which would still need to be taken into account for a fully quantitative comparison.
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4. Summary and outlook

This exploratory study of TMDs within lattice QCD, employing staple-shaped gauge connec-
tions to incorporate final/initial state effects (for SIDIS/DY), has provided first results for T-odd
Sivers and Boer-Mulders observables. Both of the corresponding TMDs are sizeable and negative
in the isovector,u− d quark case. To cancel soft factors and multiplicative renormalization con-
stants, appropriate ratios of Fourier-transformed TMDs (“generalized shifts”, cf. (2.11) and (2.13))
were constructed. The staple directionv was taken to be generically space-like, with the light-cone
limit to be approached by extrapolation in the Collins-Soper parameterζ̂ . This extrapolation has
to be performed in addition to the one to infinite staple extents η . While the latter extrapolation is
under control for a range of parameters considered in this work, the limit ζ̂ → ∞ clearly presents a
formidable challenge for the approach presented here. Withthis in mind, the Boer-Mulders func-
tion of the pion is presently being investigated. Both the lower mass of the pion compared with the
one of the nucleon (note that the hadron mass enters the denominator of ζ̂ ), as well as the reduced
statistical fluctuations of pion correlators, permitting the treatment of higher hadron momenta, are
expected to aid in accessing lattice data at higherζ̂ .
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