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The leading hadronic contribution to the muon anomalous magnetic moment is given by a

weighted euclidean momentum integral of the hadronic vacuum polarization. This integral is

dominated by momenta of order the muon mass. Since in latticeQCD it is difficult to compute

the vacuum polarization at a large number of low momenta, a parametrization of the vacuum

polarization is required to extrapolate the data. Most fits to date are based on vector meson domi-

nance, which introduces model dependence into the lattice computation of the magnetic moment.

Here we introduce a model-independent extrapolation method, and present a few first tests of this

new method.
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Figure 1: Left panel: the weightf (Q2) for the muon; right panel: typical data forΠ(Q2) from the lattice.
Horizontal axis:Q2 in GeV2.

1. Introduction

The anomalous magnetic moment of the muong−2 has been measured with great accuracy
[1], and will be measured with even greater accuracy in the near future. Therefore, a reliable
computation ofaµ = g−2 from theory with a comparable error would provide a precision test of
the Standard Model that is sensitive to a large class of models of new physics beyond the Standard
Model. For this reason there has recently been a lot of interest in lattice computations ofaµ with
controlled errors [2, 3, 4, 5]; for an overview, and more references, we refer to Ref. [6]. Here, we
report on recent work on the leading hadronic contribution to aµ , which comes from the hadronic
vacuum polarization [7].

The contribution toaµ from the lowest-order hadronic vacuum polarization can be written as
an integral over the subtracted vacuum polarizationΠ(Q2)−Π(0) as a function of euclideanQ2

[8, 9],

aHLO
µ = 4α2

∫ ∞

0
dQ2 f (Q2)

(

Π(0)−Π(Q2)
)

, (1.1)

where f (Q2) is a kinematic weight shown in Fig. 1, left panel. The right panel shows a typical
example of lattice data forΠ(Q2) (these are the data from a 643×144 lattice with lattice spacing
0.06 fm andmπ = 220 MeV discussed below).

Clearly, one needs to fit these data in order to compute the integral. In most lattice computa-
tions ofaHLO

µ to date this has been done with various variants of vector-meson dominance (VMD).1

This introduces model dependence into the computation, andthe aim of the work presented here is
to remove this model dependence.

2. Multi-point Padé approximants

We start from the observation that we can write a subtracted dispersion relation forΠ(Q2):

(

Π(0)−Π(Q2)
)

/Q2 =

∫ ∞

4m2
π

dt
ρ(t)

t(t +Q2)
≡ Φ(Q2) , (2.1)

1Ref. [5] used Padé approximants, but, as we will see below, ofa different type than those supported by a conver-
gence theorem.
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in which ρ(t) = ImΠ(t)/π is the spectral function. Because the spectral functionρ(t) ≥ 0, the
integral in Eq. (2.1) is a Stieltjes function, analytic everywhere except along the cut(−∞,−4m2

π ].
For such a function, there exists a theorem, proven in Refs. [10, 11]:

Theorem: Given P points (Q2
i ,Φ(Q2

i )), i ∈ {1, . . . ,P}, a sequence of Padé approximants (PAs)
can be constructed which converge toΦ(Q2) on any closed, bounded region of the complex plane
excluding the cut, in the limitP→ ∞.

This sequence of PAs can be constructed from theP points through a continued fraction:

Φ(Q2) =
Φ(Q2

1)

1+
(Q2−Q2

1)Ψ1(Q2
2)

1+ ...
(Q2−Q2

P−1)ΨP−1(Q
2
P)

1+(Q2−Q2
P)ΨP(Q

2)

, (2.2)

with Ψi related toΦ(Q2
j≤i+1) (Ψ0 = Φ(Q2

1), etc.). Equation (2.2) yields a[[(P− 1)/2], [P/2]]
PA (where[x] is the integer part ofx). Furthermore, one can prove that this can be rewritten as
[10, 11, 12]

Π(Q2) = Π(0)−Q2

(

a0+
[P/2]

∑
n=1

an

bn+Q2

)

, (2.3)

with
an > 0 , b[P/2] > .. . > b1 > 4m2

π , (2.4)

i.e., all poles are single poles, they are located on the cut, and all residues are positive. The constant
a0 = 0 for P even.

In the situation of an actual fit to data forΠ(Q2) obtained from a numerical computation, these
data are only known within some statistical errors. That implies that we do not know any points
of the function exactly, and a multi-point sequence of PAs asimplied by the theorem cannot be
constructed. Our strategy will be to fit a fixed number of data points on a given interval, using
the fact that sinceΠ(Q2), according to the theorem, can be described by a converging sequence of
PAs of the form (2.3), this equation provides a valid functional form to which to fit the data. More
concretely, we will fit the form (2.3) forP∈ {2,3,4,5}; this yields[0,1], [1,1], [1,2] and[2,2] PAs.
In order to compare diffferent fits, we will then compute

aHLO,Q2≤1
µ = 4α2

∫ 1 GeV2

0
dQ2 f (Q2)

(

Π(0)−Π(Q2)
)

. (2.5)

We note that VMD is the same as a[0,1] PA, but keepingb1 = m2
ρ fixed: This isnot a valid PA in

the sense of the theorem, because the theorem does not say anything about the possible values of
the parameters in addition to the conditions (2.4).

3. Tests

For our first test, we explore fits to a MILC data set on a 283×96 lattice with lattice spacing
0.09 fm, and a pion massm2

π ≈ 480 MeV [13]. This is one of the data sets that was also used in
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correlated uncorrelated
interval 0< Q2 ≤ 0.6 GeV2 interval 0< Q2 ≤ 1 GeV2

PA # parameters χ2/dof 1010aHLO,Q2≤1
µ χ2/dof 1010aHLO,Q2≤1

µ

VMD 2 5.86/3∗ 363(7) 4.37/18 413(8)
[0,1] 3 11.4/8 338(6) 3.58/17 373(37)
[1,1] 4 7.49/7 350(8) 3.36/16 424(116)
[1,2] 5 7.49/6 350(8) 3.35/15 443(293)
[2,2] 6 7.49/5 350(7) 3.35/14 445(432)

Table 1: Results for various fits. The fit marked∗ was done on an interval 0< Q2 ≤ 0.35 GeV2.
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Figure 2: Correlated (solid curve) and uncorrelated (dashed curve) for the[1,1] PA fits (left panel), and for
the correlated[1,1] (solid curve) and uncorrlated VMD (dashed curve) fits (rightpanel).

Ref. [2]. We show the results for theP∈ {2,3,4,5} PAs and for VMD in Table 1. The uncorrelated
VMD fit is the same as the fit to these data performed in Ref. [2],and the results agree.

Table 1 leads us to make the following observations:

• The correlated VMD fit is a bad fit as measured byχ2 per degree of freedom (dof); adding
parameters the fits clearly improve. Note that we always choose the fitting interval by looking
for a minimal value ofχ2/dof.

• It turns out that it is difficult to determine the parameters of the second pole with any precision
[7] (as can be inferred from the values ofχ2/dof), butaHLO,Q2≤1

µ is insensitive to the second
and higher poles.

• There is good internal consistency between all fits shown in the table, except between the
uncorrelated VMD fit and any of the correlated PA fits. However, the VMD fits are model
dependent, which translates into an unknown systematic error in these fits.

We display some of the fits of Table 1 in Fig. 2. Not surprisingly, the uncorrelated fits look
better at smallQ2, but all fits shown in the figure do a good job of describing the data. Therefore,
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Figure 3: The integrand of Eq. (1.1), using the correlated[1,1] PA fit to the 643×144 data set (solid curve),
compared with the data weighted byf (Q2) in Eq. (1.1).

based on the data, it is not possible to decide which of these fits is the best fit.

We repeated our explorative analysis on MILC lattices on a 643×144 lattice with lattice spac-
ing 0.06 fm, andmπ ≈ 220 MeV. We find very similar results;2 in particular we find

aHLO,Q2≤1
µ = 572(41)×10−10 , [1,1] correlated, (3.1)

aHLO,Q2≤1
µ = 646(8)×10−10 , VMD uncorrelated.

Our conclusions are the same as before. We note that for both data sets the discrepancy between
the correlated[1,1] PA and the uncorrelated VMD fit is about 15%. From the point of view that
both types of fit give a good description of the data, we take this to imply that there is a systematic
error of (at least) this size afflicting the determination ofaHLO

µ from the lattice.

The underlying problem is displayed in Fig. 3, where we see that there are essentially no data
in the region dominating the integral in Eq. (1.1). For this,one clearly needs data at more low
values ofQ2, with smaller errors. It would be interesting to see whetherthese improvements can
be attained by using twisted boundary conditions, something that has been tried in this context in
Ref. [5], and by an error reduction technique such as that proposed in Ref. [14].

We have also compared our PA fits with polynomial fits; resultsare shown in Table 3. “Polyn”
indicates a fit with a polynomial of degreen. All fits are correlated fits; and the pairs of fits “Poly 3,”
“ [1,1]” respectively “Poly 4,” “[1,2]” have the same number of parameters. We observe that the fits
deteriorate in the polynomial case going from Poly 3 to Poly 4, with errors increasing, and central
values foraHLO,Q2≤1

µ fluctuating more, while this is not the case going from the[1,1] to the [1,2]
PA fit.

2Of course, central values ofaHLO,Q2≤1
µ are quite different, if only because of the smaller pion mass.
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Poly 3 Poly 4 PA [1,1] PA [1,2]

# points χ2/dof a(1)µ χ2/dof a(1)µ χ2/dof a(1)µ χ2/dof a(1)µ

16 9.6/12 543(35) 9.5/11 483(244) 9.7/12 564(55) 9.7/11 565(41)
18 11.4/14 526(33) 10.5/13 596(79) 11.2/14 541(46) 11.5/13 561(21)
20 13.1/16 536(23) 13.1/15 535(45) 13.9/16 572(41) 13.9/15 572(37)
22 16.5/18 541(23) 15.9/17 513(44) 18.5/18 566(37) 18.5/17 566(33)
24 16.6/20 537(18) 16.4/19 521(41) 19.4/20 583(34) 19.4/19 583(33)
26 30.7/22 505(16) 23.6/21 580(32) 26.8/22 557(31) 26.7/21 560(27)

Table 2: Comparison of polynomial with PA fits, abbreviatingaHLO,Q2≤1
µ by a(1)µ . The number of data

points included in the fit is indicated in the first column, with 20 points corresponding to the fitting interval
0< Q2 ≤ 0.53 GeV2. Data from the 643×144 MILC lattices.

4. Conclusions

We presented a new method for parametrizing the momentum dependence of the hadronic
vacuum polarization, with the aim to avoid the model dependence of the VMD-based fits that up to
this point have been used in most fits to lattice data for the hadronic vacuum polarization. It turns
out that this is possible, because the vacuum polarization can be represented in terms of a Stieltjes
function, for which sequences of Padé approximants can be constructed which converge uniformly
to the function on any bounded region in the complexQ2 place excluding the cut.

We have tested this new idea on two examples of lattice data for the vacuum polarization. We
note that the fits based on Padé approximants can lead to larger statistical errors than some of the
VMD fits, as for instance in Eq. (3.1). However, it should be emphasized that the latter are afflicted
with an unknown systematic error originating in the inherent model dependence of VMD-based
fits. The fits based on Padé approximants avoid this systematic error.3

The new method looks promising. However, it is clear that data for the hadronic vacuum
polarization at more lowQ2 values (of order the square of the muon mass), and with smaller errors,
will be needed in order to reach a higher precision foraHLO

µ . As we have seen, fits based on Padé
approximants and VMD-based fits (both correlated and uncorrelated) give a good description of
the data, but lead to values foraHLO,Q2≤1

µ which differ by about 15%.

Finally, we observe thatg−2 is an example of a quantity which is quite sensitive to the value
of the pion mass. Therefore, better data for the hadronic vacuum polarization will also have to be
obtained at small values of the pion mass, certainly significantly smaller than 300 MeV.
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