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1. Introduction

The evaluation of disconnected diagrams is of paramount importance for eliminating system-
atic errors in the determination of proton and neutron observables. These contribute significantly
in the evaluation of the η ′ mass and strange content of the nucleon, and require a non-perturbative
evaluation involving all-to-all propagators at a given time slice. This, and the inherent gauge noise
associated with fermionic loops, explains why most hadron studies neglect these contributions.

Fortunately, in the recent years there has been progress in algorithms and an increase in com-
putational power, making these computations feasible. On the algorithmic side, the introduction
of improvements as the one-end trick, and the truncated solver method (TSM) had led to a sig-
nificant reduction in the variance of disconnected computations. Using the properties of twisted
mass fermions, one can further reduce the variance in isoscalar quantities by taking appropriate
combinations of two flavors of twisted mass fermions. On the hardware side, GPU units provide a
large speed-up in the evaluation of quark propagators and contractions. For the TSM, they provide
an optimal platform for swiftly increasing the amount of measurement we can perform.

2. Methods for disconnected calculations

2.1 Stochastic estimation

The exact computation of all-to-all propagators for the lattice volumes of physical interest is
outside the current computer power. The fermionic matrix size ranges from ∼ 106 to ∼ 109 in
the largest volumes, thus an exact computation of the inverse would require an equal number of
inversions, and the situation for timeslice-to-all propagators is equally unfeasible. A way to make
progress is to compute an unbiased stochastic estimation of the propagator [1]: we generate a set
of N sources

∣∣η j
〉

randomly, by filling each component of the source with a number, in our case a
particular representation of the Z2 or Z4 group. Then the sources have the following properties:

1
N

N

∑
j=1

∣∣η j
〉
= O

(
1√
N

)
,

1
N

N

∑
j=1

∣∣η j
〉〈

η j
∣∣= I+O

(
1√
N

)
. (2.1)

The first property ensures that our estimation is unbiased. The second one allows us to reconstruct
the inverse matrix by solving for

∣∣s j
〉

in M
∣∣s j
〉
=
∣∣η j
〉

and calculating

M−1
E :=

1
N

N

∑
j=1

∣∣s j
〉〈

η j
∣∣≈M−1. (2.2)

This way the computation becomes feasible, although it is still expensive due to the high number
of inversions required to achieve a good estimate of M−1 in Eq. (2.2).

The deviation of the estimator from the exact solution is given by

M−1−M−1
E = M−1×

(
I− 1

N

N

∑
j=1
|η〉〈η |

)
. (2.3)

From Eq. (2.1) it is clear that the more stochastic sources are used, the smaller the stochastic error
becomes. In fact, from Eq.(2.1) and (2.3) we learn that the errors decrease as O

(
1√
N

)
, as expected.
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Since we also have to deal with the gauge error, we would like to minimize the statistical error by
increasing the number of stochastic sources N until we reach the gauge noise. For some cases, this
may result in a large value of N, an expensive choice.

2.2 The Truncated Solver Method

The Truncated Solver Method (TSM) [2] increases N at a reduced cost by aiming at a low
precision (LP) estimation of the inverse

∣∣s j
〉

LP =
(
M−1

)
LP

∣∣η j
〉
, where the inverter is truncated at

reduced accuracy. The truncation criterium can be a large residual or equivalently a fixed number of
iterations. This way we can increase the number of sources NLP cheaply, but we are introducing a
bias in our estimate due to the truncation. We correct the bias stochastically, by inverting a number
of sources to high and low precision and taking the difference:

MET SM :=
1

NHP

NHP

∑
j=1

[∣∣s j
〉

HP−
∣∣s j
〉

LP

]〈
η j
∣∣

︸ ︷︷ ︸
Correction

+
1

NLP

NHP+NLP

∑
j=NHP

∣∣s j
〉

LP

〈
η j
∣∣

︸ ︷︷ ︸
Biased estimate

, (2.4)

which requires NHP high precision inversions and NHP +NLP low precision inversions. If the con-
vergence of the solver is fast, we only need a few high precision inversions to estimate properly the
correction, and then the error falls as O

(√
1/NLP

)
. Therefore we want to ensure a good conver-

gence for the solver; in our case this is ensured by the twisted mass regularization, which introduces
a lower bound for the eigenvalues of the dirac operator.

The TSM needs tuning of its parameters, namely the precision of the LP inversions and
NHP/NLP ratio, to get a safe result with maximum performance. For the first parameter we chose
values already used in the literature, i.e., the residual ρLP ∼ 10−2 [3]. The tuning of the second
parameter was performed empirically: we took a disconnected diagram we expected to yield a
large stochastic error, and we optimized NHP and NLP so as to get the minimum error at the lowest
computer cost. As shown in Fig. 1, the error decreases as the number of HP or LP increases. A
good compromise for this particular diagram is HP = 12 and LP = 300 as the cheapest point that
saturates to the gauge noise. Since the tuning depends on the diagram to be computed, we decided
to take the more conservative number of 24 for the number of HP sources.

2.3 The one-end trick

The properties of the twisted mass action provide a powerful method to reduce the variance of
the disconnected diagrams. The standard way to compute the disconnected diagrams is to generate
N stochastic sources ηr, invert them, and compute the diagrams corresponding to operator X as
1
N ∑

N
r
〈
η†

r Xsr
〉
≈ Tr

(
M−1X

)
, where the operator X is expressed in the twisted basis. However, if

the operator X involves an isovector combination in the twisted basis, one can resort to the identity
Mu−Md = 2iµaγ5, which becomes M−1

u −M−1
d =−2iµaM−1

d γ5M−1
u for the propagators:

2iµa
N

N

∑
r
〈srγ5Xsr〉= Tr

(
M−1

u X
)
−Tr

(
M−1

d X
)
+O

(
1√
N

)
. (2.5)

As a result of this substitution, the fluctuations are reduced by the small µ factor. Most important
is the implicit sum of V terms in the product M−1

d γ5M−1
u . The difference of propagators exhibits
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a signal-to-noise ratio of 1/
√

V , but in the product it becomes V/
√

V 2. In fact, a comparison
between the two methods reveals a large reduction in the errors at the same computer cost [4 – 6].
The drawback of this technique is its inapplicability to operators lacking a τ3 flavour matrix in the
twisted basis. A generalized version of the trick can be developed from the identity Mu +Md =

2DW , with DW the Dirac-Wilson operator without a twisted mass term. After some algebra,

2
N

N

∑
r
〈srγ5Xγ5DW sr〉= Tr

(
M−1

u X
)
+Tr

(
M−1

d X
)
+O

(
1√
N

)
, (2.6)

but the lack of the µ suppresion factor introduces a considerable penalty in the signal-to-noise ratio.

3. Simulation details

In order to test these methods, we analyzed 4698 configurations of the B55 ensemble of the
ETMC collaboration. This ensemble is a 323× 64 lattice and was generated with 2+ 1+ 1 dy-
namical fermions, at pion mass mπ ≈ 360 MeV and strange and charm quark masses fixed at about
their physical values. The resulting lattice spacing is a = 0.086(1) fm determined from the nucleon
mass resulting in mπL∼ 5. The disconnected diagrams were computed by making intensive use of
a modified version of the QUDA library [7, 8], which implemented new code and kernels to do the
required inversions and contractions on the GPUs. For the Fourier transform we used the CUFFT
library.

The QUDA library allowed for multi-GPU calculations, so 2 GPUs worked in parallel per
configuration. As seen in the right graph of Fig. 1, the scaling for a few GPUs is very good, with
a ∼ 90% increase in performace when adding the second GPU. This result holds up to 8 GPUs,
where there is a drop, beyond that the advantages of adding new GPUs are only useful in the case
of lack of memory. It is remarkable however that we can reach TFlop sustained performance with
just a few GPUs.
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Figure 1: Left: Tuning of the number of HP and LP stochastic noise vectors for the TSM using 50 configu-
rations of the B55.32 ensemble for the the traceless version of the operator iψ̄γ3D3ψ at a given value of the
insertion time ti = 8 and sink time ts = 16. The error is shown versus NLP for different values of NHP marked
by the different ploting symbols given in the legend. Right: Strong scaling of the multi-GPU code for this
ensemble.
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The computations were performed on GPU clusters with NVidia fermi GPUs, mainly Tesla
M2070 with 6Gb of memory, but also Tesla M2090 and M2050. The noise sources were generated
on-the-fly, and the propagators were not stored, in order to save storage and I/O time.

4. The analysis with the summation method

One of the advantages of the one-end trick for twisted mass fermions is the fact that, since the
noise sources must be on all sites, we obtained results for all the possible insertions for free. This
feature enables us to use the summation method to perform the ratio analysis.

The method is known since a long time [9 – 11], and requires the knowledge of the three point
function for all possible insertion times. The advantage is the reduction of the noise due to the
excited states by an exponential of the sink time, e−kts , as opposed to the standard decrease with the
insertion time e−Kti . In this method we sum, for every value of ts, the ratios from ti = 0 up to ti = ts,
RSum(ts) = ∑

ti=ts
ti=0 RPlateau(ti, ts). Thence the dependence of the ratio on ti dissappears. The ratio

RPlateau, computed as the quotient between the three-point function and the two-point function, can
be written as RPlateau(ti, ts) = RGS +O(e−Kti)+O(e−K′ts), where RGS is the uncontaminated ratio,
and the other contributions are the undesired excited states. After performing the sum in ti, we get
the ratio as a slope RSum(ts) = tsRGS +c(K,K′)+O(e−Kts)+O(e−K′ts), and the contributions of the
excited states become a geometrical series in ti whose sum decays as ts. Therefore we expect a
better suppression of the excited states at the same ts. The drawback is that we now need to fit to a
straight line with two fitting parameters instead of one.

5. Results

-0.1

 0

 0.1

 0.2

 0.3

-10 -5  0  5  10

σ c
Ν

[G
eV

]

(tins -ts/2)/a

Summ. [2-18]
Plateau

ts=8
ts=12
ts=14

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2  4  6  8  10  12  14  16  18

Σ t
i R

(t
i/

a
,t

si
n

k
/a

)

(tsink - tsource)/a

tfit
sink

=[2,18]

Figure 2: Left: Charm content for the nucleon, from RPlateau(ti, ts). The grey band is the value obtained
from the summation method (right).

We combined the GPU-computed diagrams with nucleon 2-point functions in order to get the
ratios for gA and σN

c . Each disconnected diagram was combined with a set of 5 2-point functions,
with randomized positions for each one of the 2912 configurations, where the 2-point functions
were computed for proton and neutron, propagating backwards and forwards. In this manner we
produced 20 measurements per gauge configuration. The slope obtained in the summation method
changes as the sink-source separation increases and fitting too early would yield a wrong result.
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Figure 3: Left: Disconnected contribution to the light σ -term of the ∆ from RPlateau(ti, t f ). Right: The
strange σ -term of the ∆.
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Figure 4: Left: Light σ -term of the Ω from RPlateau(ti, ts). The grey band is the value obtained from the
summation method by fitting the slope shown on the right.
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Figure 5: Disconnected contribution to the isoscalar gA using the generalized one-end trick of Eq.(2.6). The
results are noisier than those obtained for operators calculated using the standard one-end trick of Eq.(2.5).

The two methods give consistent results, and therefore combining both one can ensure that we
have a large enough sink-source separation for excited states to be neglected.

For the σN
c (Fig.2), more statistics are needed to understand the change in slope in the summa-

tion method. In the summation of the ∆ we observed a similar behaviour, but it was quite reduced
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and the results agree with the plateaus (Fig.3), even when our statistics were smaller: 4643 con-
figurations combined with 4 different 2-point functions propagating forwards and backwards (8
measurements). In contrast, the Ω (Fig.4) yields a strong signal with the same statistics.

The generalized version of the one-end trick as expected is more noisy. Our results for the
isoscalar nucleon axial charge, gis

A are shown in Fig. 5 and are in agreement with recent evaluation
using Clover fermions [12].

6. Conclusions

The computation of disconnected contributions for flavour singlet quantities has become fea-
sible, due to the improvement in the algorithms and to the increase in computational resources. In
this work we show that we can get reliable results for disconnected contributions to the σ -terms
and the isoscalar axial charge. GPUs are particularly efficient for the evaluation of disconnected
diagrams using the TSM, yielding a huge improvement in the computation of LP inversions and
contractions. In additon, the one-end trick allows a reduction of the variance at the same com-
putational cost, as well as getting the fermion loops for all the possible insertion times for free.
This property, together with the application of the plateau and the summation methods, as well
as the generalized one-end trick, allowed us to compute nucleon observables wiere disconnected
diagrams play an important role.
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