PROCEEDINGS

OF SCIENCE

Gauge fixing using overrelaxation and simulated
annealing on GPUs

Mario Schrock®
Institut fiir Physik, FB Theoretische Physik, Universitdt Graz, A-8010 Graz, Austria
E-mail: mario.schroeckQuni-graz.at

Hannes Vogt
Institut fiir Theoretische Physik, 72076 Tiibingen, Germany
E-mail: hannes.vogtQuni-tuebingen.de

We adopt CUDA-capable Graphic Processing Units (GPUs) for Coulomb, Landau and maxi-
mally Abelian gauge fixing in 3+1 dimensional SU(3) lattice gauge field theories. The local
overrelaxation algorithm is perfectly suited for highly parallel architectures. Simulated anneal-
ing preconditioning strongly increases the probability to reach the global maximum of the gauge
functional. We give performance results for single and double precision. To obtain our maximum
performance of 300 GFlops on NVIDIA’s GTX 580 a very fine grained degree of parallelism is
required due to the register limits of NVIDIA’s Fermi GPUs: we use eight threads per lattice site,

i.e., one thread per SU(3) matrix that is involved in the computation of a site update.

The 30th International Symposium on Lattice Field Theory
June 24-29, 2012
Cairns, Australia

*Speaker.

(© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:mario.schroeck@uni-graz.at
mailto:hannes.vogt@uni-tuebingen.de

Gauge fixing using overrelaxation and simulated annealing on GPUs Mario Schrock

1. Motivation

Lattice QCD is the discrete version of the gauge theory of the strong interaction and by con-
struction it is invariant under local gauge transformations of the form

g Uu(x)g(x+)", (1.1
The lattice gauge fields or link variables U, (x) are connected to the continuum gauge fields via
Uy (x) = efstu) (1.2)

and thus live in the Lie group SU(3) itself instead of in its algebra. Whereas physical observables
are gauge independent, the study of gauge dependent quantities like the fundamental QCD Green’s
functions requires to fix the gauge, i.e., to choose a specific transformation g(x) € SU(3) for all x.

Gauge fixing on the lattice corresponds to an optimization problem with ¢(VN?) degrees of
freedom where V = N? x N; is the lattice volume. Such being the case, the process of fixing the
gauge on the lattice demands a major part of the whole simulation’s computer time and the possible
acceleration by highly parallel hardware architectures like graphics processing units (GPUs) is
clearly beneficial. A first attempt of porting lattice gauge fixing with the overrelaxation algorithm
to the GPU has been reported in [1]. The relaxation algorithm is particularly well suited to be
accelerated by the use of GPUs due to its strict locality which also opens the door to an efficient
future multi-GPU parallelization. An alternative approach based on the steepest descent method
with Fourier acceleration has been presented in [2].

Here we present a code package for lattice gauge fixing based on the family of relaxation
algorithms. The code is written in CUDA C++ and makes heavy use of template classes in order
to facilitate the extension to other algorithms and applications. Besides the standard relaxation
algorithm [3] our program supports overrelaxation [4] and stochastic relaxation [5] to overcome the
problem of critical slowing down. Furthermore, we implemented the simulated annealing algorithm
which can be applied as a “preconditioner” to the gauge fields in order to increases the probability
to reach the global maximum of the gauge fixing functional [6].

The code can be used to fix gauge configurations to the covariant Landau gauge dy A, = 0, the
Coulomb gauge d;A; = 0 and the maximally Abelian gauge.

In the remainder of this presentation we focus on the overrelaxation algorithm and the Landau
gauge as a specific example.

2. Algorithm

On the lattice, gauge fixing is equivalent to maximizing the corresponding gauge functional,
in the case of Landau gauge

FlUl =Re) tr[Uf(x)], 2.1
nx

with respect to gauge transformations g(x) € SU(3) where

Ujt (x) = g(x)Uu(x)g(x+f1)". 2.2)

Gauge fixing using overrelaxation and simulated annealing on GPUs Mario Schrock

The relaxation algorithm optimizes the value of F,[U] locally, i.e., for all x the maximum of
PRe tr[g(x)K (x)] with

K() =Y (Ua()glr+0) + Uyl —) glx—)') (23)
u
is sought. The local solution thereof is given by
g(x) =K(x)7/y/detK (x)" (2.4)

in the case of the gauge group SU(2) and for SU(3) one iteratively operates in the three SU(2)
subgroups [7].

In order to reduce the critical slowing down of the relaxation algorithm on large lattices, the
authors of [4] suggested to apply an overrelaxation algorithm which replaces the gauge transfor-
mation g(x) by g®(x), @ € [1,2) in each step of the iteration. In practice the exponentiation of the
gauge transformation is done to first or second order.

Due to the strict locality of the overrelaxation algorithm (only nearest neighbor interactions)
we can perform a checkerboard decomposition of the lattice and operate on all sites of one of the
two sublattices (“RED” and “BLACK”) at the same time.

A measure of the quality of the gauge fixing is the average L,-norm of the gauge fixing viola-
tion A% # 0

1
VN,

0=

Y tr[A%(x)A%(x)'] (2.5)

where the sum runs over all sites x and V is the number of lattice sites.

Algorithm 1 Overrelaxation
while precision 6 not reached do
for sublattice = RED, BLACK do
for all x of sublattice do
for all SU(2) subgroups do

8() = X {ULW) + Uue -) | 5 60 Flop
g(x) — g (x), project to SU(2) — 19 Flop
for all u do
Uy (x) = 82 (x)Up(x) — 84 Flop
Up(x— 1) —>Uu(x—‘a)gw(x)T — 84 Flop
end for
end for
end for
end for
end while

The algorithm is summarized in Alg. 1. In total the overrelaxation algorithm requires 751 flop
per site and SU(2) subgroup iteration and thus 2253 flop/site for SU(3).

Gauge fixing using overrelaxation and simulated annealing on GPUs

Mario Schrock

architecture Fermi
compute capability 2.0

SMs (streaming multiprocessors) 16

total CUDA cores 512
device memory 1.5 GB
memory bandwidth 192.4 GB/s
ECC available no

L2 cache 768 KB

L1 cache / SM 16 KB or 48 KB
shared memory / SM 16 KB or 48 KB
32-bit registers / SM 32768
max. registers / thread 63

Table 1: Hardware details of the NVIDIA GeForce GTX 580.

3. Hardware

We use NVIDIA’s GeForce GTX 580 for our study. The GTX 580 is the high end graphical
processing unit of the Fermi architecture which is NVIDIA’s third generation of GPUs devoted
to high performance computing using NVIDIA’s CUDA (Compute Unified Device Architecture)
programming environment. Recently the successor of the Fermi architecture has been released
(Kepler). All hardware details are summarized in Tab. 1.

4. Overrelaxation on the GPU

4.1 First attempt

CUDA supports natively only lattices up to three dimensions, for that reason we linearize the
4D lattice index using divisions and modulo conversions of V by the spatial and temporal extent of
the lattice. We assign each lattice site to a separate thread and start 32 threads per multiprocessor.

A function which is called from the host system and which performs calculations on the GPU
is called a kernel. We implemented two kernels, one which checks the current value of the gauge
fixing functional F,[U] and the gauge precision 6 after every 100th iteration step and a second
which does the actual work, i.e., which performs an overrelaxation step. The latter is invoked for
the RED and BLACK sublattices consecutively.

The GPU can read data from global device memory in a fast way only if the data is accurately
coalesced: the largest memory throughput is achieved when consecutive threads read from con-
secutive memory addresses. In order to do so we rearrange the gauge field into two blocks for the
RED and BLACK sublattices. Moreover, for the same sake of memory coalescing, we choose the
site index running fastest which results in a storage layout in which the gauge matrices do not lie
anymore in consecutive memory blocks.

The overrelaxation algorithm on the GPU is bandwidth bound. Thus, in order to reduce mem-
ory traffic, we use the unitarity of SU(3) matrices to reconstruct the third line of each matrix on the
fly instead of reading it from global memory. A minimal 8 parameter reconstruction [8] turned out

Gauge fixing using overrelaxation and simulated annealing on GPUs Mario Schrock

to be numerically not stable enough for our purpose since we not only have to read the gauge fields
but also store them at the end of each iteration step.

For more details about these standard tricks of GPU programming in lattice QCD we refer to
[8] and references therein.

350 100
‘ ‘ ‘ ‘ Landau SP‘NS=32 —o—
Landau SP Ng=24 — 5
300 ¢ 5 H T e — e 4 Landau SP Ng=16 —<—

SP, 8 thread(s)/site —&—
SP, 1 thread(s)/site —e&—
250 DP, 8 thread(s)/site —&— 1
DP, 1 thread(s)/site —v—

—

4

time [s]

0 ‘ ‘ ‘ . 0.01
0 16 32 64 9 128 16 32 64 96 128

lattice size [x24°%] N,

Figure 1: Left: performance for 1000 iterations. Right: time needed for 1000 iterations on N7 x N; lattices
in SP.

The performance of this first attempt can be read off from the left plot of Fig. 1. There we show
the number of flops achieved for 1000 iterations of the overrelaxation kernel in single precision (red
line, circles) and double precision (blue line, down pointing triangles) for lattices of spatial volume
243 and varying temporal extend.

4.2 Improvement

In the beginning of each iteration of the overrelaxation algorithm each thread has to read its
eight neighbor links from global memory and at the end of each iteration they have to be written
back into global memory. These eight SU(3) matrices per site equal 8 x 18 reals = 144 reals and
therewith exceed the register limit of 63 per thread (see Tab. 1) what results in register spills to
global memory and as a consequence negatively effect the bandwidth bound performance of the
kernel.

In order to reduce register spills we switch to a finer parallelization granularity: instead of
assigning one thread to one lattice site we now tie eight threads to a single lattice site, i.e., one
thread for each of the eight neighbors of a site. Then each thread needs only 18 registers to store
the gauge link.

In order to avoid warp divergences the kernel is invoked with a thread block size of 8 x 32 =
256. By doing so, each of the eight warps (warp size is 32 on the Fermi) takes care of one neighbor
type of the 32 sites and thus all threads within one warp follow the same instruction path.

The gauge transformation is then accumulated in shared memory. Since one operates on the
SU(2) subgroups of SU(3) and an SU(2) matrix can conveniently be represented by four reals, this
requires 4 x 32 = 128 reals or 512 bytes per thread block.

5. Performance

On the left hand side of Fig. 1 we show that with the fine parallelization granularity of eight

Gauge fixing using overrelaxation and simulated annealing on GPUs Mario Schrock

threads per lattice site we achieve a maximum performance of 300 Gflops for single precision
(SP) and thus an improvement by a factor more than two compared to the conventional one thread
per site strategy. On the right hand side of Fig. 1 the time required to run 1000 iterations of the
overrelaxation algorithm on different lattice sizes is presented.

500

relaxation
OR w=1.475
SRp=0.11 —— |

400

gauge precision 8
=
o
(2]

100

. . . . 64
15000 20000 25000 30000 lattice size [x243]

iterations

0 5000 10000

Figure 2: Left: number of iterations on a randomly chosen 8 = 6.1, 32* lattice. Right: speedup over CPU.

In Fig. 2, on the left, we give an example of how tuning of the overrelaxation (OR) and stochas-
tic relaxation (SR) parameters can reduce the required number of iterations to achieve the aimed
gauge quality (here 8 < 10~!2). This information combined with the information from Fig. 1 tells
that the required time to fix the randomly chosen gauge configuration of lattice size 32* to the Lan-
dau gauge with the overrelaxation algorithm Fig. 2 to the precision of 8 < 107!2 is of the order of
one minute.

Lastly, we compare our performance to the overrelaxation kernel of the FermiQCD library [9]
run in parallel with MPI on all four cores of the Intel Core i7-950 (“Bloomfield”) processor @
3.07GHz. The ratio of the time needed by FermiQCD to the time needed by our CUDA kernel on
the GTX 580 for varying lattice sizes is plotted in Fig. 2 (r.h.s.). We find a speedup of evidently
more than 150 for all lattice sizes, or in other words, assuming linear weak scaling, the performance
of our code on one GTX 580 GPU is equivalent to the performance of the FermiQCD library on
150 Intel Core 17-950 CPUs (i.e. 600 cores) for the same algorithm.

6. Summary

We presented a CUDA implementation for gauge fixing on the lattice based on the relax-
ation algorithms. In particular, our code can be used to fix gauge field configurations to Landau,
Coulomb or the maximally Abelian gauges using simulated annealing, overrelaxation or stochas-
tic relaxation. Using a fine parallelization granularity of eight CUDA threads per lattice site we
achieve a maximum performance of 300 Gflops in single precision on NVIDIA’s GTX 580. Com-
paring this to the performance of the overrelaxation algorithm as implemented in the FermiQCD
library run on the Intel Core 17-950 (“Bloomfield”) quadcore processor @ 3.07GHz in parallel
using MPI, we find a speedup of more than 150. Our code will be available for download shortly.

Gauge fixing using overrelaxation and simulated annealing on GPUs Mario Schrock

Acknowledgments

We thank Giuseppe Burgio and Markus Quandt for helpful discussions. M.S. is supported by

the Research Executive Agency (REA) of the European Union under Grant Agreement PITN-GA-
2009-238353 (ITN STRONGnet).

References

(1]

(2]

(3]

[4]

(8]

[9]

M. Schrock, The chirally improved quark propagator and restoration of chiral symmetry, Phys.Lett.
B711 (2012) 217-224, [arXiv:1112.5107].

N. Cardoso, P. J. Silva, P. Bicudo, and O. Oliveira, Landau Gauge Fixing on GPUs,
arXiv:1206.0675.

J. Mandula and M. Ogilvie, The Gluon Is Massive: A Lattice Calculation of the Gluon Propagator in
the Landau Gauge, Phys.Lett. B185 (1987) 127-132.

J. E. Mandula and M. Ogilvie, Efficient gauge fixing via overrelaxation, Phys.Lett. B248 (1990)
156-158.

P. de Forcrand, Multigrid techniques for quark propagator, Nucl.Phys.Proc.Suppl. 9 (1989) 516-520.

G. Bali, V. Bornyakov, M. Miiller-Preussker, and K. Schilling, Dual superconductor scenario of
confinement: A Systematic study of Gribov copy effects, Phys.Rev. D54 (1996) 2863-2875,
[hep-1lat/9603012].

N. Cabibbo and E. Marinari, A New Method for Updating SU(N) Matrices in Computer Simulations of
Gauge Theories, Phys. Lett. B 119 (1982) 387.

M. Clark, R. Babich, K. Barros, R. Brower, and C. Rebbi, Solving Lattice QCD systems of equations
using mixed precision solvers on GPUs, Comput.Phys.Commun. 181 (2010) 15171528,
[arXiv:0911.3191].

FermiQCD Collaboration, M. Di Pierro et al., www.fermigcd.net, Nucl. Phys. Proc. Suppl. 129 (2004)
832-834, [hep—-1at/0311027].

http://xxx.lanl.gov/abs/1112.5107
http://xxx.lanl.gov/abs/1206.0675
http://xxx.lanl.gov/abs/hep-lat/9603012
http://xxx.lanl.gov/abs/0911.3191
http://xxx.lanl.gov/abs/hep-lat/0311027

