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We perform an extensive study of autocorrelation of several observables in lattice QCD with two
degenerate flavours of naive Wilson fermions using DD-HMC algorithm and show that (1) at a
given lattice spacing, autocorrelations of topological susceptibility and pion and nucleon propa-
gators with wall source decrease with decreasing quark mass, (2) autocorrelation of topological
susceptibility substantially increases with decreasing lattice spacing but autocorrelation of topo-
logical charge density correlator shows only mild increase and (3) increasing the size and the
smearing level increase the autocorrelation of Wilson loop.
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1. Introduction

The most popular algorithm to simulate lattice QCD with dynamical fermions is the Hybrid
Monte Carlo (HMC) [1] and one of its improved variations, namely, Domain Decomposed Hybrid
Monte Carlo (DD-HMC) [2] aims to achieve significant acceleration of the numerical simulation.
Dynamical Wilson fermion simulations at smaller quark masses, smaller lattice spacings and larger
lattice volumes on currently available computers have become feasible with recent developments
such as DD-HMC algorithm. However, approach to the continuum and chiral limits may still
be hampered by the phenomenon of critical slowing down. One of the manifestation of critical
slowing down is the increase in autocorrelation times associated with the measurements of various
observables. Thus measurements of autocorrelation times help us to evaluate the performance of
an algorithm in overcoming critical slowing down. In addition, an accurate determination of the
uncertainty associated with the measurement of an observable requires a realistic estimation of the
autocorrelation of the observable which in turn depends on the various parameters associated with
the particular algorithm used.

An extensive study of autocorrelation mainly in pure gauge theory has been carried out by
ALPHA collaboration [3]. They have shown that the autocorrelation of squared topological charge
increases dramatically with decreasing lattice spacing while Wilson loops decouple from the modes
which slow down the topological charge as lattice spacing decreases. In the simulations with
dynamical fermions, the study becomes more difficult because the autocorrelation may now depend
on number of quark flavours (n f ), the quark masses and the fermion action used [4]. In this work
we study the autocorrelations of a variety of observables measured with DD-HMC algorithm in the
case of naive Wilson fermions [5, 6]. Note that the measurement of autocorrelation is notoriously
difficult, since accurate determination of it may require considerably longer trajectories. In this
work we mainly focus on various trends of autocorrelations that we can observe clearly rather than
the precise measurement of the integrated autocorrelation time.

2. Autocorrelation

The unnormalized autocorrelation function,

CO (t) = 〈O(s)O(s+ t)〉−µ
2
O

(2.1)

where µO ≡ 〈O(t)〉. Now if the algorithm satisfies detailed balance and ergodicity, following Refs.
[3] and [7] one can arrive at, CO (t) = ∑n≥1 e−t/τn | ηn(O) |2 where τn = − 1

lnλn
, assuming λn’s,

eigenvalues of symmetrized transition matrix are positive.
For any particular observable O , autocorrelation among the generated configurations are gen-

erally determined by the integrated autocorrelation time τO
int for that observable. For this purpose,

at first, one needs to calculate the unnormalized autocorrelation function of the observable O mea-
sured on a sequence of N equilibrated configurations as

CO (t) =
1

N− t

N−t

∑
r=1

(
Or −O

)(
Or+t −O

)
(2.2)
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where O = 1
N ∑

N
r=1 Or is the ensemble average. Following the windowing method as recommended

by Ref. [7], the integrated autocorrelation time is defined as

τ
O
int =

1
2

+
W

∑
t=1

Γ
O (t) (2.3)

where ΓO (t) = CO (t)/CO (0) is the normalized autocorrelation function and W is the summation
window. The errors are calculated by the single omission jackknife method.

3. Observables

Let us denote plaquette and Wilson loop of size R× T with HYP smear level s by Ps and
Ws(R,T ) respectively. Topological susceptibility with smear level s is denoted by Q2

s (the normal-
ization factor, inverse of lattice volume, is ignored). We have measured the autocorrelations for the
plaquette, Wilson loop, nucleon propagator, pion propagator, topological susceptibility and topo-
logical charge density correlator (C(r) = 〈q(x)q(0)〉 where q(x) is topological charge density and
r =| x |) for the saved configurations except for the unsmeared plaquette where we have measured
for all the configurations, at two values of gauge coupling (β = 5.6 and 5.8) and several values of
the hopping parameter κ . Our notations and conventions used for pion and nucleon observables
are given in Ref. [8]. We measure the autocorrelation of the zero spatial momentum correlation
functions at an appropriate time slice corresponding to the plateau region of the effective mass. For
lattice volume 243 × 48 and 323 × 64 we use 12th and 15th time slices respectively. Our data for
topological charge, susceptibility and charge density correlator are presented in [10, 11, 12].

4. Auto-correlation Measurements

We have generated ensembles of gauge configurations by means of DD-HMC [2] algorithm
using unimproved Wilson fermion and gauge actions [5, 6] with n f = 2 mass degenerate quark
flavors. At β = 5.6 the lattice volumes are 243 × 48 and 323 × 64 and the renormalized physical
quark mass (calculated using axial Ward identity) ranges between 25 to 125 MeV (MS scheme at 2
GeV). At β = 5.8 the lattice volume is 323×64 and the renormalized physical quark mass ranges
from 15 to 75 MeV (MS scheme at 2 GeV). The lattice spacings are determined using nucleon
mass to pion mass ratio and Sommer method. These determinations agree for the value of Sommer
parameter r0 = 0.44 fm. The lattice spacings at β = 5.6 and 5.8 are 0.069 and 0.053 fm respectively.
The number of thermalized configurations ranges from 7000 to 14000 and the number of measured
configurations ranges from 150 to 2000. For the lattice parameters and simulation statistics see
[8] . For all ensembles of configurations the average Metropolis acceptance rates range between
75-98%.

5. Results

Fig. 1 shows that for two lattice spacings (β = 5.6,5.8) autocorrelations of Q2
20 decrease

with decreasing quark mass even though for the smaller quark mass at β = 5.8 (κ = 0.15475)
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Figure 1: Integrated autocorrelation times for topological susceptibilities (Q2
20) at β = 5.6 (a = 0.069 fm)

(left) and at β = 5.8 (right) (a = 0.053 fm).
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Figure 2: Comparison of normalized autocorrelation functions for Q2
20 (left) and Q2

20, C(r = 12.0) (right) at
β = 5.6, κ = 0.158 and β = 5.8, κ = 0.1543 with lattice volumes 243×48 and 323×64 respectively.
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Figure 3: Integrated autocorrelation times of Wilson loops for different sizes (left) and for different levels
of HYP smearing (middle). Integrated autocorrelation times for PP, AP, PA and AA correlators with wall
source, measurements are done with a gap of 24 trajectories (right).

molecular dynamics trajectory length is smaller. A possible explanation 1 for this suppression
of autocorrelation with decreasing quark mass is that the algorithm needs to span between lesser
number of topological sectors at smaller quark mass since the width of the Gaussian distribution of
topological charge decreases with decreasing quark mass.

Fig. 2 shows that autocorrelation for Q2
20 increases quite significantly with decreasing lattice

spacing at comparable quark mass whereas the autocorrelation of C(r) (Fig. 2 (right) ) increases
slightly with decreasing lattice spacing.

For the measurement of static potential V (r) one needs to measure Wilson loops of various

1Stefan Schaefer (private communication)
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β = 5.6
κ lattice block τPion

int τNucleon
int

0.158 243×48 63×8 99(19) 75(18)
0.158125 243×48 63×8 50(9) 34(9)
0.15825 243×48 63×8 40(10) 25(9)
0.158 323×64 83×16 39(13) 33(17)
0.15815 323×64 83×16 31(15) 26(7)
0.15825 323×64 83×16 34(11) 18(6)

Table 1: Integrated autocorrelation times for pion (PP) and nucleon propagators with wall sources at β =
5.6. Here block refers to DD-HMC block.

sizes. In the measurement of a Wilson loop, to suppress unwanted fluctuations smearing is needed.
Therefore it is interesting to study how autocorrelation of Wilson loops changes with sizes of
the Wilson loops and smearing levels. In Fig. 3 we present integrated autocorrelation times for
W20 with different sizes (left) and W (4,4) with different levels of HYP smearing (middle). We
observe that the integrated autocorrelation time increases with the increasing size of the Wilson
loop and also with the increasing smearing level. In the context of Wilson loop and Polyakov
loop, SESAM collaboration has observed that geometrically extended observables suffer more from
autocorrelation [13].

In the following discussion P, A denote pseudoscalar and fourth component of axial vector
densities respectively. In Table 1 integrated autocorrelation times for pion (PP) and nucleon prop-
agators with wall sources at a given time slice are presented. Clearly the integrated autocorrelation
time decreases with increasing κ both for pion and nucleon propagators. Similar observation was
made by ALPHA collaboration in the case of Clover fermion [14]. The autocorrelation times of
pion and nucleon propagators with point source and sink are smaller than the gap with which con-
figurations are saved. For the determination of pion decay constants and PCAC quark mass, pion
propagators other than PP are also needed. In Fig. 3 (right) the integrated autocorrelation times
for PP, AP, PA and AA correlators with wall source for at β = 5.6, κ = 0.158 and lattice volume
243 × 48 are presented. The propagators with A in the source are less correlated than P in the
source.

6. Improved estimation of τint

Following Ref. [3], an improved estimation of τint can be determined as follows. Let τ∗ be
the best estimate of the dominant time constant. If for an observable O all relevant time scales are
smaller or of the same order of τ∗ then the upper bound of τint

τ
u
int =

1
2

+Σ
Wu
t=1Γ

O(t)+AO(Wu) τ
∗ (6.1)

where AO = max(ΓO(Wu),2δΓO(Wu)). Wu is chosen where the autocorrelation is still significant.
One possible estimation of τ∗ is by measuring effective autocorrelation time, which is introduced in
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Figure 4: Normalized autocorrelation function and effective autocorrelation time for P0 (left) Q2
20 (right) at

β = 5.6, κ = 0.158 and lattice volume 243×48.
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Figure 5: Integrated autocorrelation times and their upper bounds (τu
int ) for topological susceptibilities (Q2

20)
at β = 5.6 (a = 0.069 fm) (left) and at β = 5.8 (right) (a = 0.053 fm).

Ref. [3] as described below. Define effective exponential autocorrelation time τ
exp
e f f (O) = t

2ln ΓO (t/2)
ΓO (t)

.

τ
exp
e f f which can be an estimate of τ∗ is defined as, τ

exp
e f f = MaxO [ t

2ln ΓO (t/2)
ΓO (t)

]. The estimation of

τ
exp
e f f (O) requires good signal to noise ratio in the asymptotic region in a case by case basis which

in turn requires very long Markov chain and is beyond the scope of the present work.
However it is interesting to look at τ

exp
e f f (O) where reliable data is available and we present

such an example in Fig. 4 (the jackknife technique is used to calculate the error of τ
exp
e f f (O)). In

Fig. 4 it appears that Q2
20 is coupling dominantly with slow mode, whereas P0 is coupling with

more than one modes; nevertheless the slowest mode appearing in P0 is approximately the same as
in Q2

20. This is reflected in the behaviour of τ
exp
e f f (O), which shows a single plateau for Q2

20, but for
P0, there is more than one plateau and the data is more noisy. Similar behaviour is observed in pure
gauge theory in Ref. [3].

In Fig. 5 we present the integrated autocorrelation times and their upper bounds (τu
int) for

topological susceptibilities (Q2
20) at β = 5.6 (left) and at β = 5.8 (right). At both lattice spacings,

we find that both τint(Q2
20) and τu

int(Q
2
20) decrease as quark mass decreases.

In conclusion, an extensive study of autocorrelation of several observables in lattice QCD
with two degenerate flavours of naive Wilson fermion has shown that (1) at a given lattice spacing,
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autocorrelations of topological susceptibility and pion and nucleon propagators with wall source
decrease with decreasing quark mass, (2) autocorrelation of topological susceptibility substantially
increases with decreasing lattice spacing but autocorrelation of topological charge density corre-
lator shows only mild increase and (3) increasing the size and the smearing level increase the
autocorrelation of Wilson loop.
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