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1. Introduction

It is a well-known challenge to include the fermion deteramninto the Boltzmann factor of
the desired ensemble. Many applications, like algorithnith Wetropolis acceptance-rejection
steps or reweighting methods, require the ratio of suchrgéé@nts. The main problem are the
fluctuations of the ratio due to the stochastic and the enlgenalse. In order to use and to improve
such methods it is essential to understand these fluctsatibon[1] we presented an algorithm
where we use the knowledge of these fluctuations to estathiesiPartial-Stochastic-Multi-Step-
algorithm which reaches a high acceptance rate of 60% up teerate lattice sizes dfL.2fm)*.
With this experience and some techniques we used, we studytte fluctuations in the case of
mass reweighting.

In these proceedings we will analyze the scaling of massightieg [2] by factorizing the
fluctuations into UV- and IR-dominated terms. This is doneubing domain decomposition [3].
The determinant of the (Wilson-)Dirac operator is theniet detD detDy,,detDy,, Where the
Schur complement is given iy = 1— nglDbWD;leow with the Dirac operator in block notation

D— [Dbb Dow Dob ZDow

-@wb -@ww

The operatoDyy, (Dww) is @ block-diagonal matrix with the black (white) block Béroperators on
the diagonal. The Schur complement can be restricted tougygost ofD,,, (using the projector
P defined byD,P = Dyup) without changing its determinant and its inverse is themhefform
D! =1— PZywDuwb-

. (1.1)
ow wa

and accordingly D™ = [

2. Two Flavor Mass Reweighting

The idea of mass reweighting is to reuse an ensemble whichnisrgted at a specific mass
my (the ensemble mass) at a different mass(the target mass). This is possible by correcting
the Boltzmann factor of the ensemble [4]. The correctiondaronfigurationU enters as the
reweighting factoW (U, m;, mp) which is given by

_detD(U,mp)N 1 2.1)
~ detD(U,m)Nr  detMNs '

with D(U,m) the (Wilson-)Dirac operatoN; the number of flavors (=2) and the ratio matrix
M = D~1(U,m)D(U,my). The reweighting factor introduces additional noise ingkialuation of
observablegO)y, = %, the ensemble fluctuations. One can avoid the exact evatuatithe
determinant by an unbiased stochastic estimation of tlegriat

W(U ) m17 m2)

Nhit

_ Hexnl —n™MT IR (VR
PR _/D[n]D[n Jexp{—-n'"M'Mn} — N i;e (2.2)

wheren; are complex Gaussian noise vectd¥g; is the number of the estimates and one estima-
tion costs one inversion of the Dirac operator. This estibmaintroduces stochastic fluctuations
which are negligible if and only if the ensemble fluctuati@lmsninate the statistical error of the
measurement. We analyze these fluctuations by reweightiod\t = 2 CLS-ensembles (@)
impr. Wilson fermions) of two different sizes 48243 and 64x 328 at 8 = 5.3 (a = 0.066 fm)
from the pseudoscalar massmfs = 440 MeV to the target mass ofs= 310 MeV [5].
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2.1 Stochastic Fluctuations
The variance foNi; = 1 of the stochastic estimation is given by [6]

) 1 1

% T de2M™M —1)  (detMM)Z 23)

It follows that the variance is only defined if all eigenvasuaf the ratio matrixM ™™ are larger than
1/2 and that every eigenvalue which is equal to one produce®nbastic noise. So every method
which shifts the eigenvalues of the ratio matrix to one impsthe estimation. We will shortly
motivate and present two different methods which fulfilstbondition, mass interpolation [2] and
domain decomposition [3].

It is obvious that the mass reweighting facWi(U;, m;, mp) is known if the spectrum of the
Wilson-Dirac operatoD(U;,m;) is known

4 A A(D(myp))
detM 1= iU 7 (D(ma) + Am (2.4)

whereAm = m; — mp. The product is dominated by the IR-modes. The eigenvalfidisearatio
matrixM = 1+Am-D~1(m,) are given by

A(M)=1+Am-A(D Y (mp)). (2.5)

For the case that there is no negative eigenvalue it follasX(M™™) > 1 (for Am > 0). So if
we use the Wilson-Dirac operator each eigenvalue produoebastic noise in particular also the
UV-modes. If we use the Schur complement, the oper@toY(my) in Eq. (2.5) is replaced by
an operatof Zow(Mz) — Zww(Mp) Dy (M1 ) Du] Dyt (M1 ) Dw Which could have eigenvalues with a
negative or vanishing real part. With the Schur complemeatratio matrix has a spectrum which
is distributed around one.

In addition Eq. (2.5) implies that a smaller mass-shift wdosthift the eigenvalues closer to
one. This is easily achieved if one introduces an intermiain the mass and by splitting up
the ratio matrix in several ratio matric®{my)/D(mp) = {D(m)/D(m)} {D(m)/D(my)}. This
technique works only if no real eigenvalue of the Wilsondgioperator becomes negative. In this
case the ratio matrix gets eigenvalues which are smallarilaand the stochastic estimation fails.
If this happens one has to use additional methods, like @@ehvalue calculation, to calculate the
reweighting factor in an appropriate way. The estimatiothefreweighting factor with the domain
decomposition is now given by
Nolk detD2(mp)

W =Wy - [ 2/
’ k_y detDE(my)

(2.6)
wherek labels the white and black blocks. For moderate block dizes6* the exact calculation

of the block determinants is feasible while the global fattg is estimated by usin@l mass
interpolation steps anidhi; estimations of each ratio

N Nhi Aton
o=\ s > e (-1 @7
izl | Nt (&
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Figure 1. The figures show the stochastic fluctuations in the case oflawor mass reweighting by using
mass interpolation and domain decomposition for one corsdtgnn of the 48x 243 ensemble. In the left
figure we analyze the scaling in the number of mass interipolatepsaN while the total number of global
inversionsN - Ny is fixed to 640. We plot the estimated relative stochastiavees?(W)/W? against the
number of interpolation stefs. The analysis shows that fdf > 8 it makes no difference if one increases
Nhit or N. If the eigenvalues olf/IiTMi are close enough to ore(W)/W? scales with ¥NNy;. We fit the
asymtotic plateau for the total operator (star,blue), theneodd preconditioned operator (equivalent to a
Schur complement with blocks of length I=1) (diamonds,nmag) the Schur complement witd-®locks
(circle, red) and with 12blocks (square,black). The right figure shows the resulte@plateau fit against
the total dimension of the operators divided by the dimemsithe global Wilson-Dirac operator. For the
Schur complement we only take the dimension of the projdeiato account.

where theith ratio matrix is given byM; = D~1(m)D(m_1) with the Schur complemerid(my)
depending on théh massm; =i/N-my+ (N —i)/N-my. Inverting the Schur complement costs
one inversion of the Dirac operator.

In practice it is now easy to control the stochastic fluctuai by changing the number of
inversionsN - Ny, this is possible as long as there is no zero-crossing ofifeealues oD(m).
To avoid a wrong estimation (zero-crossingstar> ny) it is necessary to control the variance of
each factor in (2.7), which can be estimated by sefiing> 6. IncreasingN or Ny;; is comparable,
if the eigenvalue distribution of the ratio mati'M is close to one, which can be achieved by
increasingN to sufficient value (see Fig. (1)).

Fig. (1) also shows the effect of using the Schur complermstéad of the total Dirac operator.
For block size$ > 1 it is two times more efficient to use the Schur complementthAer conclusion
is that stochastic fluctuations do not scale with the dinmmef the operator. It is obvious that the
remaining IR-modes dominate the fluctuations. In generalimeethat the stochastic fluctuations
scale withAm?V /(N - Nijt).

2.2 Ensemble Fluctuations

The ensemble fluctuations enter the game if one wants tolatdcan observable, which is
given for the target mass b{O)m, = <8\VA>/>”“1. The total variance of such an observable gets the
m
form [7],[8]
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Figure 2. The figures show the scaling of(InW) with the volumeV and the mass shifsm by using
60-100 configurations. The left figure shows the fluctuatiohthe global factorg?(InW) multiplied by
1/VAn? against several mass shifismwhile on the left side we plot the small volume and on the rgijtie

the bigger one (we write the parameters for the bigger inkata§. The ensemble noise is estimated with
Nhit = 6, N = 16, (48) and domain decomposition witt @*) blocks. The 8 blocks are decomposed further
in a 8 Schur complement with Dirichlet boundaries arfobdocks. The right figure show the fluctuations
for the global Schur complement multiplied by {VAn? against several mass shits and different Schur
complements. The constant fit illustrate the weak volumesddpnce while/V is an upper estimate for
this dependence.

Var(o)/Ncnfg ~ Sccn)fzg Teorr (Vgsgg) + 1> (2.8)

wheredO? is the variance of the observable without the reweightimngoiaNcn 14 the total number
of configurations and.. the autocorrelation time. We observe tzhat the mass reweifector is

distributed like a log-normal distributiop(W) ~ & exp{—%}. Then it is straightforward
to show that the ensemble noise is given by

(v?vr\(/\;\zl) +1> _ (2.9)

with g2 = var(Inw).

In order to study the scaling @f?, we fix the stochastic noise to a small and volume indepen-
dent value. From Fig. (2) it follows directly that® = ki - Am?-V for some constark;, while we
observe that the Schur complement has only a Wwedkpendence. We appraise it wigfy/. The
V dependence ol emerges through a large correlation between the factoredilock operators
and the Schur complement. In general mass reweightingde lolume is limited to small values
of Am.

3. OneFlavor Mass Reweighting

Nature motivates one flavor reweighting. There are manyceffehich depend only on the
specific quark, like isospin splitting of the up- and dowratu Also for corrections of a not exactly
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tuned strange quark mass it is necessary to calculate therevasighting factor for one flavor. For
that we introduce the integral

1 L
——_ = [ D[nD[n? -n'™m =y e M- 1
——ox= [ DIIDn"exp{-n"™Mn} - Nt 2, 3-1)
which is well defined only if R&n™™Mn) > 0V n # 0. The variance of the stochastic estimation is

given by
) 1 1

%~ defMT+M—1) detM™™
which is defined ifA (MT +M) > 1. So it is possible to estimate the reweighting factoddtM as
long as the variance is defined. In general the scaling of amerfimass reweighting is comparable
with the two flavor case (see Fig. (3)), but obviously there some differences. The estimate
is complex. In practice one can use this to improve the ettiméecause of thgs Hermiticity
the expectation value is real and one can neglect the imggjpeat. We found that this trick
improves the estimation by a factor two compared to the sgr@ot trick [9]. In the case that a
real eigenvalue becomes negative it is not possible by usigs interpolation to ensure that the
integral is defined. Another issue is that the estimate betmgplex could have a negative sign.
We do not detect such problem if we suppress the stochassie twa proper level which is easily
achieved by increasing the number of mass interpolatigrsste

The proposed one flavor estimation has many advantages aulti 4ke used in future appli-
cations.

(3.2)

4. Conclusion

In these proceedings we analyze the scaling behavior of neassighting by studying the
stochastic and ensemble fluctuations with the methods méspolation and domain decompo-
sition. We find that the stochastic fluctuations scale mm?V/(N -Npit). By using domain de-
composition with block sizes with> 1 the fluctuations are reduced at least by a factor two. The
ensemble fluctuations of the full operator scales le?V while for the Schur complement the
volume dependence is weaker and compatible with/V.

Assuming thaioZ, (INW) = a?(InW) + \%522 the cost for the mass reweighting of the total op-
erator can be deduced from the number of the original cordtgurs needed, given by

Nenfg _ Netf- exp{AmZ-V <k1+ K2 > } + 0(Am) (4.1)
Teorr N Nhjt

for constantsk; andk, which depends on the ensemble parameters. Here we use thitiatefi
of the number of effective configuratidless = % (var(W)/(W)2+1) of [7] and an analytic
expansion of Eq. (2.3). Fd¥ett = 50 we gefNen g/ Teorr = 1517241509 (for the bigger volume) )
for N - Nhir = 32 by fixingky/(kiNpitN) = 0.11. If one consider a reweighting range/uoh/2 the
numbers change tBlcntg/Teorr = 117(741) using the same numbers of inversioNs Ny = 32.
The total cost of evaluating the reweighting factor onlylssavith the volumeé/ but through the
V dependence of the ensemble fluctuations mass reweightiwgras rapidly inefficient for larger
volumes. This limits the reweighting rangerm
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Figure 3: The figures show the scaling of the stochastic fluctuatiottsdrctase of one flavor mass reweight-
ing for one configuration of the smaller volume like in Fig.).(Me compare the one flavor reweighting
with the root-trick [9]. The root-trick is a biased estimatiy using the square root of the two-flavor es-
timation 1/detM = /[ D[n]D[nf]exp{-nTMTMn} — \/1/Nhit s it exp{—nf(MTM — 1)n;}. The right
figure shows the estimated relative variamcgW) /W? of the global Schur complement with 4Blocks
against the number of mass interpolation stdpg he total number of inversions for each point is constant
with N - Nhir = 640. The plot shows the difference of the stochastic flu@natfor one flavor case Eg. (3.1)
(red,triangle) and the root-trick (blue,diamonds). One see that for all points the variance is finite, the
one flavor integral exists. The right figure shows the condigio the 1/NN,-plateau for several operators
(compare Fig. (1)).

To conclude there are many more details to discuss and teoilokesic a more general style in
the framework of mass reweighting, like an analytic formwl@haracterize the stochastic estima-
tion, estimation with zero crossings or a proof for the oneditantegral Eq. (3.1). We want to
address this soon in an adequate way.
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