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We discuss the implementation of the HMC and RHMC evolution algorithms for 2+1 flavors
of Möbius fermions and present comparisons between Möbius fermions and DWF for QCD at
zero and non-zero temperature. We discuss how quantities such as the residual mass, topological
charge and chiral condensate behave using the Möbius action and compare the results with the
standard domain wall fermions that we have previously used. The immediate benefit comes from
a smaller size being used in the 5th dimension. With appropriately chosen Möbius parameters we
argue that the same physics can be achieved more efficiently.
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1. Introduction

The class of domain wall fermion actions maintains good chiral symmetry by making use of
an extra 5th dimension. Increasing the size in this 5th dimension improves chiral behavior of the
action, at the cost of demanding more computation resources since the total number of lattice sites
is proportional to the size of the 5th dimension.

The main motivation of using Möbius fermions is that it reduces the residual chiral symmetry
breaking effect, while maintaining a much affordable size in the 5th dimension when compared to
plain domain wall fermions.

2. Measuring the Möbius Fermions Residual Mass

We follow the convention used by [1, 2, 3] when referring to the Möbius Dirac operator.
The residual chiral symmetry breaking effect of domain wall class fermion actions is usually

measured by its residual mass, mres. It is conventionally defined by evaluating the divergence of
the axial current Aa

µ(x),

∑
µ

∆µAa
µ(x) = 2mJa

5 (x)+2Ja
5q(x). (2.1)

Where the Ja
5 (x) term measures the chiral symmetry breaking effect due to fermion mass, and Ja

5q(x)
measures the residual chiral symmetry breaking effect due to the fermion action. When 2Ja

5q(x) is
modeled by Ja

5 (x), the coefficient is recognized as 2mres.
The actual form of Aa

µ(x), Ja
5 (x) and Ja

5q(x) can be obtained by variating the path integral

Z =
∫

DUDψDψ exp

(
−SG(U)− ∑

xs;ys′
ψxsDxs;ys′ψys′

)
, (2.2)

where the detailed form of the Möbius Dirac operator Dxs;ys′ can be found in [1, 2]. Following [4],
we construct a local fermion variation{

ψxs ←− exp(εa
xsλ a)ψxs

ψxs ←− ψxs exp(−εa
xsλ a)

. (2.3)

The direct consequence of the above variation is the following conserved current, obtained from
δZ = 0,

−∑
ys′

⟨
ψxsλ

aDxs;ys′ψys′
⟩
+∑

ys′

⟨
ψys′Dys′;xsλ aψxs

⟩
= 0.

The above conserved current yields vector current Vµ(x) and axial current Aµ(x) that satisfy the
following divergence relation,

∆µV a
µ (x) =0 (2.4)

∆µAa
µ(x) =2mJa

5 (x)+2Ja
5q(x). (2.5)
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The detailed form of V a
µ (x) and Aa

µ(x) are complicated. But Ja
5 (x) and Ja

5q(x) are relatively simple12,

Ja
5 (x) =∑

y

(
ψ1(y)λ

aD1
−(y,x)P+ψ2N(x)−ψ2N(y)λ

aD2N
− (y,x)P−ψ1(x)

)
(2.6)

Ja
5q(x) =∑

y

(
ψN+1(y)λ

aDN+1
− (y,x)P+ψN(x)−ψN(y)λ

aDN
−(y,x)P−ψN+1(x)

)
. (2.7)

From the above mres can be readily computed using the ratio of Ja
5q(x) and Ja

5 (x).
We can move one step further and define the physical quark field for Möbius fermions as

qx =P−ψx,1 +P+ψx,2N (2.8)

qx =−∑
y

ψy,2ND2N
− (y,x)P−−∑

y
ψy,1D1

−(y,x)P+. (2.9)

Practically this implies replacing each occurance of D (or D−1) in a corresponding plain domain
wall formula by D−1

− D (or D−1D−), where D− = diag{D1
−,D

2
−, · · · ,D

Ls
−}. Another useful fact is

that γ5R5D−1
− D is Hermitian for Möbius fermions if the parameters bi and ci are symmetric with

respect to i, the 5th dimention index, i.e. bi = bLs+1−i and ci = cLs+1−i.
Figure 1 shows mres of the Möbius fermion action measured on 163 ∗ 32, β = 2.13, Ls = 16

DWF+I ensemble. We also set Ls = 16 for the Möbius action, bi and ci are fixed to the same value
for all i and we further require that bi = ci+1. So there is only one free parameter, which is simply
called c in the graph. Effectively there is an optimal c value when minimizing mres is concerned.
This behavior is also confirmed by similar tests on other ensembles.

.000

.004

.008

.012

.016

0 0.5 1 1.5 2 2.5 3

m
re

s

c

163×32,Ls = 16,ml = 0.01

Figure 1: Residual Mass of the Möbius Dirac operator on plain domain wall fermion ensemble.

2.1 Matching Two Möbius Actions

In the following we consider only a simplified case of the Möbius fermions, where the pa-
rameters bi and ci are independent of the 5th dimensional index i. And we simply denote the 2

1Both Ls and 2N refer to the size of the 5th dimension of the Möbius fermions in this document.
2The definition of Di

− can be found in [2], where it is denoted by D(i)
− .
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parameters as b and c. The five dimensional Möbius Dirac operator can be reduced into a four
dimensional equivalent overlap form. In this way we can compare two different Möbius Dirac
operators.

Let the size of the 5th dimension be Ls, we can apply the Domain wall-overlap transformation
[1] and cast the Möbius Dirac operator into its four dimensional equivalent overlap form

DOV (m) =
1
2
(1+m+(1−m)γ5ε(x)) , (2.10)

where

λ =b+ c (2.11)

x =γ5DW (2+(b− c)DW )−1, (2.12)

DW is the Wilson Dirac operator and ε(x) is a rational approximation to the sign function

ε(x) =
(λx+1)Ls− (λx−1)Ls

(λx+1)Ls +(λx+1)Ls
. (2.13)

Not surprisingly if two such approximations to the sign function ε(x) are close to each other then
their corresponding Möbius actions will share similar physical properties, this includes their mres

and also other common quantities. In the following we show that such pairs of Möbius actions
agree on measured quantities to very high accuracy.

To match two ε(x) with different parameters b,c,Ls and b′,c′,L′s, we only need to compare
their Taylor expansions. This yields the following condition

Ls(b+ c)≈L′s(b
′+ c′) (2.14)

b− c =b′− c′. (2.15)

The second condition ensures that the Shamir kernel x is the same for the two actions. The above
relation is useful for deriving Möbius parameters for actual ensemble generations.

Figure 2 shows the relative difference ∆ε(x) of 2 such ε(x) functions. One rational approxi-
mation comes from Ls = 16 plain domain wall fermion, and the other comes from Ls = 10 Möbius
fermion. The graph shows that if the parameters b and c are chosen according to (2.14, 2.15) (the
λ = 1.6 case), then the induced Möbius fermion action agrees with the plain domain wall action
within 10−3.
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Figure 2: Comparison between b+c = 1, Ls = 16 Möbius operator (actually plain domain wall) and b+c =
1.5,1.6, Ls = 10 Möbius operator.

3. Möbius HMC Evolution

We chose to generate a test 163 ∗ 8 Möbius ensemble using β = 1.671 with Iwasaki gauge
action and the Dislocation Suppressing Determinant Ratio (DSDR). We choose the Möbius pa-
rameters to be Ls = 18, b = 1.832 and c = 0.832 so it approximates plain domain wall fermion
action with Ls = 48 according to (2.14, 2.15). We made this choice so we can directly compare this
Möbius ensemble with one finite temperature lattice ensemble found in [5], where the correspond-
ing β = 1.671, Ls = 48 ensemble was generated using plain domain wall fermion.

The summary of the 2 ensembles can be found in table 1. The 2 ensembles agree well on
the plaquette values. The HMC algorithm runs on the Möbius ensemble approximately a factor
of 2 faster, mainly due to the reduction in the size of the 5th dimension. Figure 3 compares the
evolution of topological charge of the 2 ensembles. It is clear that both ensembles show very similar
properties.

ensemble # of trajectories plaquette value HMC time HMC acceptance ratio
Ls = 48 DWF 7000 0.484065(24) ∼8000 sec 0.806

L′s = 18 Möbius 1156 0.484048(50) ∼4000 sec 0.849

Table 1: Evolution summary of the Ls = 48 plain domain wall ensemble and L′s = 18 Möbius ensemble.

For the measurement of the chiral condensate ⟨ψψ⟩, we measured on the Möbius ensemble
using both the Möbius and plain domain wall fermion Dirac operators. For the Möbius fermions
we use the quark field defined by (2.8, 2.9). The results from the two actions agree point by point,
where the relative difference fluctuates around 0.1%.
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Figure 3: Comparison on topological charge evolution between Ls = 48 plain domain wall ensemble and
Ls = 18 Möbius ensemble. Left: topological charge evolution history. Right: topological charge distribution.
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Figure 4: Comparison between the computed chiral condensate ⟨ψψ⟩. Notice that there is a secondary scale
for the difference.

4. Möbius Fermions in QCD Thermodynamics

The Möbius fermions are attractive for QCD Thermodynamics because it has good chiral
symmetry property and is computationally cost effective compared to plain domain wall fermions
or overlap fermions.

Table 2 shows the parameters used in the ongoing generation of 323 × 8 Möbius fermion
ensembles at physical pion mass by the HotQCD collaboration. The column Ls(2c+1) shows the
size of Ls necessary by plain domain wall fermions to achieve the same mres, which is a factor of
2c+1 larger compared to the Möbius fermions being used.
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β T (MeV) Ls c Ls(2c+1) ml(×10−5) mres(×10−5)

1.633 141 24 1.5 96.0 222 212(4)
1.671 150 16 1.5 64.0 206 169(3)
1.707 160 16 1.5 64.0 192 80(3)
1.740 169 16 1.2 54.4 179 53(3)
1.771 177 16 1.0 48.0 168 36(2)
1.801 187 16 1.0 48.0 158 25(2)
1.829 195 16 0.9 44.8 149 18(2)

Table 2: mres data for the ongoing 323× 8, physical pion mass QCD thermodynamics ensembles. The
column ml is the target light quark mass and mres is the measured residual mass.

5. Conclusion

We presented a method to determine the residual chiral symmetry breaking effect, mres for
Möbius fermions. We further presented simulation results of Möbius fermions on 163 ∗ 8 finite
temperature lattice and compared it with existing plain domain wall fermions. The results demon-
strated that Möbius fermions can achieve similar physical properties with much smaller compu-
tational costs, mainly due to smaller sizes in its 5th dimension. We then showed how Möbius
fermions reduce the cost of the ongoing generation of 323 ∗8 finite temperature ensembles at phys-
ical pion mass.
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