
P
o
S
(
L
a
t
t
i
c
e

2
0
1
2
)
1
9
2

Lattice QCD performances on Aurora

Michele Brambilla
University of Parma and INFN
E-mail: michele.brambilla@fis.unipr.it

Francesco Di Renzo∗
University of Parma and INFN
E-mail: francesco.direnzo@unipr.it

We present our most recent results for Lattice QCD performances on the Aurora parallel architec-
ture. Aurora is based on Intel multicore CPUs and benefits from both standard (IB) and custom
(3D torus) networks. Performances for LQCD are shown to effectively meet the expectations.

The 30 International Symposium on Lattice Field Theory - Lattice 2012,
June 24-29, 2012
Cairns, Australia

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:michele.brambilla@fis.unipr.it
mailto:francesco.direnzo@unipr.it

P
o
S
(
L
a
t
t
i
c
e

2
0
1
2
)
1
9
2

LQCD performances on Aurora Francesco Di Renzo

1. Aim of the work

The key computational task of Lattice QCD is the application of the Dirac operator: the ubiq-
uitous task in any of our programs is the iterative computation of its inverse. Here we will be
concerned with the parallel computation of the so-called hopping term of the Wilson Dirac Opera-
tor (WDO)

ψ
′
αi(x) =

4

∑
µ=1

(U i j
µ (x)(1− γ

αβ

µ)ψβ j(x+ µ̂)+U i j
µ (x− µ̂)(1+ γ

αβ

µ)ψβ j(x− µ̂)) (1.1)

All in all, making appropriate use of symmetries, this entails 1320 Floating Point (FP) opera-
tions on 360 FP words per lattice site.

The main issue for an efficient parallel computation (in our case, that of the WDO) is the quest
for an optimal balance between computations and communications. Given a computational cost
C to be assigned to N nodes (so that C/N is the computational cost per node), a computational
performance P per node, a local exchange of information I/N, a memory bandwith B and remote
exchange of information IR and bandwith BR, in first approximation one expects that the time T for
the computation at hand equals [1]

T = max{ C
NP

,
I

NB
,

IR

BR
}=

C
NP

max{1,
IP
CB

,
IRNP
CBR

} (1.2)

The previous formula gives a quantitative meaning to a simple expectation: if the computing
time on each node equals the time required for data exchange, then there is a chance to hide com-
munications with computations.

The platform on which we performed our numerical benchmarks is the Aurora system that
the AuroraScience collaboration [2] has been running for a couple of years [3]. The machine is
a highly dense, liquid cooled parallel system, based on Intel multi-core Xeon CPUs and endowed
with both a commodity IB network and a custom TORUS [4] network . AuroraScience has been an
FBK/INFN joint initiative, in collaboration with Eurotech. The present work builds on experience
we reported on in [5].

2. The quest for optimally balancing computations and communications

In recent years a common trend has been the increase in the number of basic processing units
on a single node. This is becoming more and more extreme in devices such as Graphics Process-
ing Units (GPUs) used for General-Purpose computations (the so-called GPGPU paradigm) or in
many-cores CPUs (at the moment mainly the Intel MIC). This trend forces us to confront a problem
that has already shown up for systems like Aurora (based on multi-cores CPUs). We are talking of
the interplay between the intra-node and inter-nodes levels of parallelism.

2.1 Intra-node parallelism

Eq. (1.2) generically refers to remote bandwith and exchange of informations. This should
be contrasted with on-node bandwith and exchange of informations. In a nutshell, the main issue

2

P
o
S
(
L
a
t
t
i
c
e

2
0
1
2
)
1
9
2

LQCD performances on Aurora Francesco Di Renzo

CORE

L2

CORE

L2

CORE

L2

CORE

L2

CORE

L2

CORE

L2

12 MB shared L3 cache

memory
controller

QPI link
controller

3 x DDR3 2 x QPI

Figure 1: The Aurora nodecard (left). Basic structure of the Intel Westmere processor (right).

of the interplay between the intra-node and inter-nodes levels of parallelism can be phrased in a
simple question: what is a node on nowadays systems?

In Fig. 1 we show both the basic architecture of the Aurora nodecard and a sketch of the Intel
Westmere processor (that is the one our system is based on). On the left one can see that an Au-
rora node is an SMP dual-processor system, which is connected to remote nodecards either via a
standard IB network or via a custom Torus network (whose firmware resides on an FPGA). One
has a remote communication each time either IB or the Torus is accessed. However, it is trivial
to observe that without any data exchange taking place via either network, there is possibly data
exchange between the two CPUs via the so-called QPI link. On the right one can see that the 6
cores on a single CPU share an L3 cache memory. They access the DDR3 memory of their own
socket via the memory controller and (as alredy pointed out) the DDR3 memory attached to the
other socket via a QPI link controller. One can conclude that, strictly speaking, there is double
layer of parallelism even inside each nodecard.

A lattice is partitioned into sub-lattices resinding on each node. Roughy speaking, it is the
optimization of such a partitioning that will eventually decide for efficiency. Our main choices are
the following:

• Our parallel program is an MPI/multithread one. A single MPI rank resides on each nodecard
and 24 threads are at work within it. This means that we make use of HyperThreading (HT),
a choice that will be further commented later.

• To benefit from SSE instructions we explicitly code them via the so-called SSE intrinsic
instructions.

• Any attempt to optimize memory usage (and even L1/L2/L3 cache memory usage) requires
to go through core affinity setting and memory binding. The former enables the assignment
to a given core of a given task (typically, taking care of a fraction of the sub-lattice which
is assigned to the node). This is even more important given that we make use of HT (we
will further comment on this). With memory binding one attaches memory to a given socket.

3

P
o
S
(
L
a
t
t
i
c
e

2
0
1
2
)
1
9
2

LQCD performances on Aurora Francesco Di Renzo

lattice size GFlops

8×4×242 52.6
8×12×482 37.7

122×482 30.4
12×24×482 26.8
12×482×96 22.5

Table 1: Single node performances of the Wilson Dirac Operator benchmark for various lattice sizes. Peak
performance of an Aurora nodecard is 160 GFlops.

This has mainly to do with the allocation of the (sub)lattice within the node: with a given
choice of the slowest-running direction, it is easy to split both threads and data among the
two sockets along that direction. As a result, most of the time each thread will be operating
on data allocated on the same socket the thread itself is attached to.

These three choices basically control the intra-node efficiency. To quantify how well we are
doing at this (intra-node) level of parallelism, we run simulations on a single node (i.e. we have no
inter-nodes communications), with a choice of lattice sizes that would make sense in real, parallel
simulations. Our intra-node results (with various choices of sizes) are reported in Tab. 1 (one can
easily spot cache effects). We quote performances on a single node; peak performance is around
160 GFlops. All the performances we refer to are in Double Precision.

2.2 Inter-nodes parallelism

Before we describe the parallel features of our code, we make a few basic comments on the
general problem of inter-nodes parallelism. Taking a very pragmatic attitude, we can say that two
main issues are the partitioning of the lattice into sublattices and the choice of data layout. In the
end one looks for appropriate choices being aware of the following:

• One wants to hide communications by overlapping them with computations.

• A data layout that is efficient for intra-node parallelism is not necessarily ready for remote
data exchange (actually, neither necessarily ready, nor efficient).

MPI provides solutions taking care of both issues:

• One makes use of non-blocking communications routines.

• For most of the choices made with respect to data layout, MPI can pack and unpack data.

With respect to the second issue, it is well known that changing data layout can result in
sizeable differences. In Fig. 2 we show different performances of the ETM Collaboration code [6]
(again, we look at the WDO benchmark). Programs were run on the same Aurora system, with
different data layout [2]. Fig. 2 depicts so-called strong scaling: a given lattice size is partitioned
among an increasing number of nodes.

4

P
o
S
(
L
a
t
t
i
c
e

2
0
1
2
)
1
9
2

LQCD performances on Aurora Francesco Di Renzo

0 10 20 300

5

10

15

20

Nr. of node cards

Pe
rf.

/n
od

e
ca

rd
 [G

Fl
op

s]

483 x 96
323 x 64

0 10 20 300

5

10

15

20

Nr. of node cards

Pe
rf.

/n
od

e
ca

rd
 [G

Fl
op

s]

483 x 96
323 x 64

Figure 3.1.2. Example of strong scaling (left) and weak scaling (right). In the case of
weak scaling, the lattice sizes in the legend refer to 32 nodes.

With the new algorithm we obtained up to 12% of the peak performance (which is 150
Gflops / node-card). In Figure 3.1.2 (left) we show an example of strong scaling, in which
the problem size is kept fixed and distributed across an increasing number of nodes. In
the right panel of the same figure we show an example of weak scaling, in which the size
of the problem in a single node is kept fixed while the full problem size grows
proportionally to the number of nodes. Weak scaling is nearly ideal, which means that the
Infiniband network is still very efficient up to the size that we considered. Strong scaling is
sensitive to more effects, but it appears to be still quite good up to 32 nodes. The code can
also use the 3D-network, but the present size of the Aurora prototype is too small to see
the advantage. More details can be found in Ref. [4]

3.1.2 Production of Dynamical Nf=4 Gauge Configurations for the Computation of
the Renormalization Factors

The computation of the renormalization factors (RF) is an essential ingredient for the
precise computation of many physical quantities with Lattice QCD techniques. Since the
RF are defined in the chiral limit, the best way to compute them non perturbatively is via

0 10 20 300

5

10

15

20

Nr. of node cards

Pe
rf.

/n
od

e
ca

rd
 [G

Fl
op

s]

483 x 96, time�split
483 x 96, half�spinor

Figure 3.1.1 Performance gain of the time-split algorithm.Figure 2: Performances of the ETMC code with different data-layouts.

3. Tailoring a code to the Torus network

We now sketch the basic strategy of our WDO benchmark with respect to inter-nodes paral-
lelism. The choices aim to exploit the custom Torus network.

• We directly manage the buffers for data exchange. These need to be aligned and (like any
other data) are allocated making use of memory-binding.

• Hyperthreading is in place. In particular, to overlap computations and communications, we
explicitly have at some point threads performing computations and threads performing com-
munications. It is known that in general HT can give a rather modest performance increase:
not surprisingly, two threads on the same physical core do not perform as two physical cores.
By managing core-affinity, we make sure that on each core there is one thread perform-
ing computations and one thread performing communications: since competition on FP re-
sources is thus negligible, this choice results in rather good efficiency. We also point out that
thread allocation changes during the execution of different tasks.

• We make use of symmetries and only send and receive half-spinors. More explicitly, spinors
are projected while they are arranged on data-sending buffers and reconstructed while they
are fetched from data-receiving buffers. We also make use of even/odd sites independent
update.

To better understand a few more details of the code one can refer to Fig. 3, which is a cartoon
for our communication strategy. Borders are color-coded in order to distinguish local borders
(orange) and remote borders (blue). According to the same color-code, data-sending buffers are
orange, data-receiving buffers are blue. It is useful to look at Eq. (1.1) itself in a color-coded form.

5

P
o
S
(
L
a
t
t
i
c
e

2
0
1
2
)
1
9
2

LQCD performances on Aurora Francesco Di Renzo

The final goal: Wilson Dirac operator kernel

0
↵i (x) =

4X
µ=1

(Uij
µ(x)(1 + �↵�µ) �j (x + µ̂) + Uij

µ(x � µ̂)(1 � �
↵�
µ) �j (x � µ̂))

Prepare borders (*) and store them (half spinor!) into dedicated bu↵ers

Half of the threads update the bulk, the remaining half exchange borders
(HT: no competition on FP resources!)

Notice that bulk is actually a bit non-trivial as a concept (one can re-allocate
threads, if needed)

Reconstruct border contributions (*)

F. Di Renzo (UNIPR) Lattice QCD on Aurora Lattice 2012 11 / 15

Figure 3: A cartoon for our communication strategy.

ψ
′
αi(x) =

4

∑
µ=1

(U i j
µ (x)(1− γ

αβ

µ)ψβ j(x+ µ̂)+U i j
µ (x− µ̂)(1+ γ

αβ

µ)ψβ j(x− µ̂))

More explicitly, the program runs as follows:

• In a first (rather quick) phase, all the threads work together in preparing the data-sending
(orange) buffers. In this phase the most relevant part of the computation is the one in orange,
in which one computes Uµ(x− µ̂)ψ(x− µ̂), then projects the half-spinor and places it on the
data-sending buffer.

• In the following phase half of the threads update the bulk of the (sub)lattice (no remote
communication is needed; these are the computation threads), while half of the threads take
care of the communications exchanging the borders. Notice that defining what is bulk is a
bit non-trivial (depending in particular on the direction µ).

• Finally, all the threads work together in reconstructing the data that are fetched from the data-
receiving (blue) buffers. In this phase the most relevant part of the computation is the one
in blue, in which one fetches the half-spinor from the data-receiving buffers, then computes
Uµ(x)ψ(x+ µ̂), reconstruct the whole spinor and places it into its position.

Perfomances figure can be read in Fig. 4, where we compare them with those of the (standard)
ETMC code (actually, the version with the data layout getting better performances on Aurora); the
latter code relies on the IB network.

It would be interesting to test how much one can improve by exploiting the AVX instruction
set, introduced on the SandyBridge CPU. Even more interesting will be to investigate how much of
the expertize gained on multi-core architectures (core-affinity, memory binding) can be effectively
exploited on many-cores architectures (namely, on the Intel MIC).

Acknowledgments

The AuroraScience project has been funded by the Provincia Autonoma di Trento and the
Istituto Nazionale di Fisica Nucleare, in the framework of an agreement with the Fondazione Bruno

6

P
o
S
(
L
a
t
t
i
c
e

2
0
1
2
)
1
9
2

LQCD performances on Aurora Francesco Di Renzo

Figure 4: Performances of the code based on Torus-network communications vs the one making use of IB
communications.

Kessler. Lattice QCD software developments and applications on Aurora are also supported by
ITN STRONGnet (European Union Grant Agreement PITN-GA-2009-238353). We thank all the
members of the AuroraScience collaboration for useful discussions.

References

[1] For a rigorous presentation see G. Bilardi et al., The Potential of On-Chip Multiprocessing for QCD
Machines, Springer Lecture Notes in Computer Science 3769 (2005) 386.

[2] L. Scorzato, AuroraScience, PoS (Lattice2010) 039.

[3] F. Di Renzo, Status of the AuroraScience project, PoS (Lattice2011) 031.

[4] M. Pivanti, F. Schifano and H. Simma, An FPGA-based Torus Communication Network, PoS
(Lattice2010) 038.

[5] M. Brambilla, F. Di Renzo, M. Grossi, Efficiency on multi-core CPUs: the Wilson Dirac operator on
Aurora, PoS (Lattice2011) 302.

[6] K. Jansen and C. Urbach, tmLQCD: A Program suite to simulate Wilson Twisted mass Lattice QCD,
Comput. Phys. Commun. 180 (2009) 2717.

7

