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We perform hybrid Monte Carlo simulations of 2 flavors lattice QCD with optimal domain-wall
fermion on the 203 ×40 lattice, with plaquette gauge action at β = 5.95, for 6 sea-quark masses
corresponding to pion masses in the range 230-450 MeV. For each sea quark mass, 5000 trajecto-
ries are generated after thermalization, and one configuration is sampled every 10 trajectories. In
this talk, we present our preliminary results of the topological charge, and the pseudoscalar mass
and decay constant.
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1. Introduction

Lattice QCD with exact chiral symmetry [1, 2] is an ideal theoretical framework to study
the nonperturbative physics from the first principles of QCD. However, it is rather nontrivial to
perform Monte Carlo simulation such that the chiral symmetry is preserved at a high precision and
all topological sectors are sampled ergodically.

Currently, there are only three groups (RBC/UKQCD, JLQCD, TWQCD) performing large-
scale dynamical simulations of lattice QCD with exact chiral symmetry. Since the computational
requirement for these dynamical simulations is 10−100 times of their counterparts using the tra-
ditional lattice fermions (e.g., Wilson fermion, staggered fermion, and their variants), they are
often performed with the state-of-the-art architectures. While RBC/UKQCD and JLQCD have
been using IBM Blue Gene supercomputers, TWQCD collaboration has been using a GPU cluster
(currently consisting of 320 Nvidia GPUs, with sustained 100 Tflop/s).

The RBC/UKQCD Collaborations have been using the conventional domain-wall fermion with
the Shamir kernel [3, 4], which suffers from large chiral symmetry breaking (i.e., large residual
mass), especially in the finite temperature QCD. On the other hand, the JLQCD collaboration used
the overlap fermion in a fixed topology [5], which attains very good chiral symmetry but in the
expense of sampling all topological sectors ergodically. To overcome the deficiencies of above
two approaches, TWQCD collaboration has been using the optimal domain-wall fermion (ODWF)
[6, 7] to preserve the chiral symmetry, which not only attains a good chiral symmetry with a modest
extension (e.g., Ns = 16) in the fifth dimension, but also samples all topological sectors ergodically.

Mathematically, ODWF is a theoretical framework to preserve the chiral symmetry optimally
with a set of analytical weights, {ωs,s = 1, · · · ,Ns}, one for each layer in the fifth dimension
[6]. Thus the artifacts due to the chiral symmetry breaking with finite Ns can be reduced to the
minimum, especially in the chiral regime. In general, the 4-dimensional effective Dirac operator of
massless ODWF can be written as [8]

D = [1+ γ5Sopt(H)]/(2r), Sopt(H) =
1−∏Ns

s=1 Ts

1+∏Ns
s=1 Ts

,

Ts =
1−ωsH
1+ωsH

, H = cHw(1+dγ5Hw)
−1, r = [2m0(1−dm0)]

−1,

(1.1)

where c and d are constants, and Hw = γ5Dw(−m0), with Dw(−m0) the usual Wilson-Dirac oper-
ator plus a negative parameter −m0(0 < m0 < 2). Here Sopt(H) = HRZ(H), where RZ(H) is the
Zolotarev optimal rational approximation of (H2)−1/2 [9].

Recently we have demonstrated that it is feasible to perform a large-scale dynamical QCD
simulation with ODWF, which not only preserves the chiral symmetry to a good precision, but
also samples all topological sectors ergodically [10]. To recap, we perform HMC simulations of 2
flavors QCD on a 163 ×32 lattice, with ODWF at Ns = 16 and plaquette gauge action at β = 5.95.
Then we compute the low-lying eigenmodes of the overlap Dirac operator, and use its index to
obtain the topological charge of each gauge configuration, and from which we compute the topo-
logical susceptibility for 8 sea-quark masses. Our result of the topological susceptibility agrees
with the sea-quark mass dependence predicted by the NLO ChPT [11], and provides the first
determination of both the pion decay constant (Fπ = 92(12)(2) MeV) and the chiral condensate
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(ΣMS(2 GeV) = [259(6)(7) MeV]3) simultaneously from the topological susceptibility. Further-
more, our recent results of the mass and the decay constant of the pseudoscalar meson [12] are
also in good agreement with the sea-quark mass dependence predicted by NLO ChPT [13], and
from which we obtain the low-energy constants F , Σ, l̄3 and l̄4. With the low-energy constants,
we determine the average up and down quark mass (mMS

ud (2 GeV) = 4.17(13)(19) MeV), and the
chiral condensate (ΣMS(2 GeV) = [230(4)(6) MeV]3). Our results of the topological susceptibility
and the mass and decay constant of the pseudoscalar meson assert that the nonperturbative chiral
dynamics of the sea-quarks are under control in our HMC simulations.

Recently we have extended our simulations to a larger lattice (203 ×40), with plaquette gauge
action at β = 5.95, for 6 sea-quark masses corresponding to pion masses in the range 230-450
MeV. In this talk, we present our preliminary results on the topological charge, as well as the mass
and decay constant of the pseudoscalar meson.

2. Lattice Setup

Simulations are carried out for two flavors QCD on a 203×40 lattice, for six sea-quark masses
mqa = 0.01, 0.02, · · · 0.06 respectively. For the quark part, we use ODWF with c = 1, d = 0 (i.e.,
H = Hw), Ns = 16, and λmin/λmax = 0.02/6.2. For the gluon part, we use the plaquette action at
β = 5.95. An outline of our simulation algorithm and features has been presented in Ref. [12].

For each sea-quark mass, we generate the initial 400 trajectories on a single GPU. After dis-
carding 300 trajectories for thermalization, we sample one configuration every 5 trajectories, re-
sulting 20 "seed" configurations for each sea-quark mass. Then we use these seed configurations
as the initial configurations for 20 independent simulations on 20 GPUs. Each GPU generates 250
trajectories independently. Thus we accumulate total 5000 trajectories for each sea-quark mass.
From the saturation of the binning error of the plaquette, as well as the evolution of the topological
charge, we estimate the autocorrelation time to be around 10 trajectories. Thus we sample one
configuration every 10 trajectories, then we have 500 configurations for each sea-quark mass. With
120 GPUs, we simulate 6 sea-quark masses concurrently. It takes about 10 months to complete the
simulations.

For each configuration, we calculate the zero modes plus 180 conjugate pairs of the lowest-
lying eigenmodes of the overlap Dirac operator. We outline our procedures as follows. First,
we project 250 low-lying eigenmodes of H2

w, using adaptive thick restart Lanczos algorithm (a-
TRLan), where each eigenmode has a residual less than 10−12. Then we approximate the sign
function of the overlap operator by the Zolotarev optimal rational approximation with 64 poles,
where the coefficients are fixed with λ 2

max = (6.4)2, and λ 2
min equal to the maximum of the 250

projected eigenvalues of H2
w. Then the sign function error is less than 10−14. Using the 250 low-

modes of H2
w and the Zolotarev approximation with 64 poles, we use the a-TRLan algorithm again

to project the zero modes plus 180 conjugate pairs of the lowest-lying eigenmodes of the overlap
operator, where each eigenmode has a residual less than 10−12. We store all projected eigenmodes
for the later use.

We compute the valence quark propagator of the 4D effective Dirac operator with the point
source at the origin, and with parameters exactly the same as those of the sea-quarks.
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To measure the chiral symmetry breaking due to finite Ns, we compute the residual mass
according to the formula [8]

mres =

⟨
tr(Dc +mq)

−1
0,0

tr[(D†
c +mq)(Dc +mq)]

−1
0,0

⟩
{U}

−mq, (2.1)

where (Dc +mq)
−1 denotes the valence quark propagator with mq equal to the sea-quark mass, tr

denotes the trace running over the color and Dirac indices, and the subscript {U} denotes averaging
over an ensemble of gauge configurations.

In Fig. 1, we plot the residual mass versus the sea quark mass. Using the linear fit, we obtain
the residual mass in the chiral limit, mresa = 0.00050(3), about 5% of the lightest sea-quark mass.
In the following, it is understood that each bare sea-quark mass mq is corrected by its residual mass,
i.e., mq → mq +mres.
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Figure 1: The residual mass versus the sea quark mass for 2-flavor QCD with ODWF.

3. Preliminary results

For the projection of eigenmodes (zero modes plus 180 pairs of lowest-lying eigenmodes)
of the overlap operator for each configuration, we have only completed about half of the total
(500×6 = 3000) configurations. In Fig. 2, we plot the histogram of topological charge distribution
for mqa = 0.01,0.02, · · · ,0.06 respectively. Evidently, the probability distribution of Qt for each
sea-quark mass behaves like a Gaussian, and it becomes more sharply peaked around Qt = 0 as the
sea-quark mass mq gets smaller. We will measure the topological susceptibility and other related
physical quantities after the projections of all 3000 configurations are completed.

Using the valence quark propgator with quark mass equal to the sea-quark mass, we compute
the time-correlation function of the pseudoscalar interpolator

Cπ(t) = ∑⃗
x

tr{γ5(Dc +mq)
−1
0,xγ5(Dc +mq)

−1
x,0},
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Figure 2: Histogram of topological charge distribution for six sea-quark masses (preliminary results with
∼ 200 configurations for each ensemble).

where the trace runs over the Dirac and color space. Then the ensemble average ⟨Cπ(t)⟩ of each
mq is fitted to the formula (Z/(2Mπa))[e−Mπ at + e−Mπ a(T−t)] to extract the pion mass Mπa and the
decay constant Fπa = (mqa

√
2Z)/(M2

πa2).
In Fig. 4, we plot (Mπa)2/(mqa) and Fπa versus mqa respectively. Here we have made the cor-

rection for the finite volume effect using the estimate within ChPT calculated up to O(M4
π/(4πFπ)

4)

[14]. Taking into account of the correlation between M2
π/mq and Fπ for the same sea-quark mass,

we fit our data to the formulas of NLO ChPT [13]

M2
π

mq
=

2Σ
F2

[
1+
(

Σmq

16π2F4

)
ln
(

2Σmq

F2Λ2
3

)]
, (3.1)

Fπ = F
[

1−
(

Σmq

8π2F4

)
ln
(

2Σmq

F2Λ2
4

)]
, (3.2)

where Λ3 and Λ4 are related to the low energy constants l̄3 and l̄4 as follows.

l̄3 = ln

(
Λ2

3

m2
π±

)
, l̄4 = ln

(
Λ2

4

m2
π±

)
, mπ± = 0.140 GeV.

Our procedure of data fitting to extract the parameters (Σ, F , Λ3 and Λ4) has been outlined in
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Figure 3: (color online) (a) The time-correlation function of the pseudoscalar meson for six sea quark
masses. (b) The effective mass of (a). The dashed line connecting the data points of the same sea-quark
mass is for guiding the eyes.
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Figure 4: Pseudoscalar meson of 2 flavors QCD with ODWF (a) (Mπ a)2/(mqa), and (b) Fπ a. The solid
lines are the simultaneous fits to the NLO ChPT, for six sea-quark masses.

Ref. [12]. For six sea-quark masses, our fit gives

Σa3 = 0.00122(6)(2), Fa = 0.0414(10)(16),
l̄3 = 3.829(105)(43), l̄4 = 4.755(93)(23),

(3.3)

where the systematic errors are estimated by varying the number of data points from 6 to 4 (mqa ≤
0.04 ).

With the fitted parameters, we use the physical ratio(
Mπ

Fπ

)phys

=
0.135 GeV
0.093 GeV

≃ 1.45
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as the input, and solve the equation Mπ(mq)/Fπ(mq) = 1.45 to obtain the physical bare quark mass
mphys

q a = 0.00254(10)(16). From (3.2) and the physical pion decay constant Fπ = 92.6 MeV, we
determine the inverse lattice spacing at the physical point,

1/a = 2.076(6)(5) GeV.

From (3.1), we obtain the pion mass at the physical point, Mπ = 0.134(5)(3) GeV, which serves as
a consistency check.

In order to convert the chiral condensate Σ and the average mu and md to those in the MS
scheme, we calculate the renormalization factor ZMS

s (2 GeV) using the non-perturbative renormal-
ization technique through the RI/MOM scheme [15], which gives ZMS

s (2 GeV) = 1.244(18)(39).
Then the values of Σ and the average of mu and md are transcribed to

ΣMS(2 GeV) = [238(10)(6) MeV]3, (3.4)

mMS
ud (2 GeV) = 4.07(13)(12) MeV. (3.5)

Our preliminary results of the chiral condensate (3.4) and the average up and down quark mass
(3.5) are in good agreement with our previous results on the 163 ×32 lattice [12].

This work is supported in part by the National Science Council (Nos. NSC99-2112-M-002-
012-MY3, NSC99-2112-M-001-014-MY3) and NTU-CQSE (No. 10R80914-4). We also thank
NCHC and NTU-CC for providing facilities to perform part of our calculations.
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