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In SU(3) lattice QCD, we improve a method to extract gauge fields from link variables analyti-
cally. With this method, we perform the first study on the effective mass generation of off-diagonal
gluons and infrared Abelian dominance in the maximally Abelian (MA) gauge in the SU(3) case.
We investigate the propagator and the effective mass of the off-diagonal gluon field in the MA
gauge with U1); x U(1)g Landau gauge fixing in SU(3) quenched lattice QCD ofhdtf3=5.7,

5.8 and 6.0. The off-diagonal gluon component behaves as a massive vector boson with the
approximate effective maddyz = 1.1 — 1.2GeV in the region of = 0.3 — 0.8fm, and its propa-
gation is limited within a short range. We thus show the origin of infrared Abelian dominance in
terms of short-range propagation of off-diagonal gluons. We also investigate the functional form
of the off-diagonal gluon propagator. We find that the functional form is well described by the
four-dimensional Euclidean Yukawa-type function @xpnysr }/r with meg = 1.3 — 1.4GeV for

r = 0.1—0.8fm. This also indicates that the spectral function has a negative region.
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1. Introduction

For the quark-confinement mechanism, Nambu, 't Hooft and Mandelstam proposed the dual-
superconductor pictur@l]. This picture is based on the electromagnetic duality and the analogy
with the one-dimensional squeezing of the magnetic flux in the type-Il superconductor. In this pic-
ture, there occurs color-magnetic monopole condensation, and then the color-electric flux between
the quark and the antiquark is squeezed as a one-dimensional tube due to the dual Higgs mech-
anism. From the viewpoint of the dual-superconductor picture in QCD, however, there are two
assumptions of Abelian dominand [B] and monopole condensation. Here, Abelian dominance
means that only the diagonal gluon component plays the dominant role for the nonperturbative
QCD phenomena like confinement.

The maximally abelian (MA) gauge has mainly been investigated from the viewpoint of the
dual-superconductor picturél[B, 6, [7, 8, @, (10, T, 12 [I3 14 5 and the various lattice QCD
Monte Carlo simulations show that the MA gauge fixing seems to support these assun@fibns |
61 Q 001113 1I314.

According to these studies, the diagonal gluons seem to be significant to the infrared QCD
physics, which is called “infrared Abelian dominance”. Infrared Abelian dominance means that
off-diagonal gluons do not contribute to infrared QCD. Therefore, the essence of infrared Abelian
dominance is the behavior of the off-diagonal gluon propagator.

The gluon propagators in the MA gauge has been investigated in SU(2) lattice Monte Carlo
simulations[[1 [14 [1§]. To investigate the gluon propagators in the MA gauge, it is desired to ex-
tract the gluons exactly from the link-variables, because the link-variable cannot be expanded even
for a small lattice spacing due to large fluctuation of gluons. In SU(2) lattice case, the extraction
is easy to be done without any approximation, because of the SU(2) property. With this extraction,
the SU(2) lattice simulation suggests that the off-diagonal gluons do not propagate in the infrared
region due to the effective mabk; ~ 1.2GeV, while the diagonal gluon widely propaga@d|[

In this paper, we propose a method to extract the gluons from the link-variable directly and
generally in SU(3) lattice QCD, and to investigate the gluon propagators in the MA gauge.

2. SU(3) lattice QCD results for gluon propagators in the MA gauge

To begin with, we consider a useful and general method to extract the gauge fields analytically
and exactly from the link-variables whethagA, (x)| < 1 is satisfied or noff[7 [19].
In this method, each link-variablé = U, (s) is diagonalized with a unitary matri@,

o 0
Ug = QUQT = gaaeae’ — do , (2.1)
0 gt

where—m < 6 < m (i = 1,2,3) is taken. Note tha®; + 6, + 63 = 0 (mod 2m) according to
TrQAQ' = TrA = 0 (mod 2m). This property is also numerically checked in the MA gauge with
U(1)3xU(1)g Landau gauge fixing.
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We can derive gluon field& by taking the logarithm oflg,

6 O L 6 0
6 = A= ;QT 0 Q. (2.2)
0 6 9 \o e

oY to
ag

This formalism is quite general, because the derivation is correct in any gauge and even without
any gauge fixing.

Using the SU(3) lattice QCD, we calculate the gluon propagafdisifi the MA gauge with
the U(1xxU(1)s Landau gauge fixing. In the MA gauge, to investigate the gluon propagators,
we use the above-mentioned method. The Monte Carlo simulation is performed with the standard
plaquette action on the 1@attice with3 =5.7, 5.8 and 6.0 at the quenched level. All measurements
are done every 500 sweeps after a thermalization of 10,000 sweeps using the pseudo heat-bath
algorithm. We prepare 50 gauge configurations for the calculation atf®athe statistical error
is estimated with the jackknife method.

Here, we study the Euclidean scalar combination of the diagonal (Abelian) and off-diagonal
gluon propagators as

1
Gl = 5 3 (A0A0),
1

Glu(r) = 5 Y (AL0ALWY))- (2.3)
a#3,8
The scalar combination of the propagator is expressed as the function of the four-dimensional
Euclidean distance = /(x, —yu)%. When we consider the renormalization, these propagators
are multiplied by am-independent constant, according to a constant renormalization factor of the
renormalized gluon fields.
We show in Figllthe lattice QCD result for the diagonal gluon propag&f}i¢'(r) and the off-
diagonal gluon propagat@ff[l(r) in the MA gauge with the U(3)xU(1)s Landau gauge fixing.
In the MA gaugeG4b¢!(r) andGYff (r) manifestly differ. The diagonal-gluon propaga@fbe!(r)
takes a large value even at the long distance. In fact, the diagonal q&ﬁoﬂg in the MA gauge
propagate over the long distance. In contrast, the off-diagonal gluon propéﬁ}(rr) rapidly
decreases and is negligible forZ 0.4fm in comparison Witrﬁﬁge'(r). Then, the off-diagonal
gluonsAﬁ (a+# 3,8) seem to propagate only within the short range a9.4fm. Thus, “infrared
abelian dominance” is found in the MA gauge.

3. Estimation of off-diagonal gluon mass in the MA gauge

Next, we investigate the effective mass of off-diagonal glu@@. [ We start from the La-
grangian of the free massive vector fiélg with the massvl # 0 in the Euclidean metric. In the
infrared region with larg#r, the propagato,,,(r; M) reduces to

3VM e Mr

2(27'[)% s’ (1)

Guu(r;M) = (Au(X)Au(y))

1
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Figure 1: The SU(3) lattice QCD results of the gluon propaga®f$®'(r) andG (r) as the function of

r = +/(Xu —yu)? in the MA gauge with the U(k)xU(1)s Landau gauge fixing in the physical unit. The
Monte Carlo simulation is performed on the*liattice with 8 = 5.7, 5.8 and 6.0. The diagonal-gluon
propagatoGﬁbe'(r) takes a large value even at the long distance. On the other hand, the off-diagonal gluon
propagatoGy, (r) rapidly decreases.
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Figure 2: The logarithmic plot of®/2Gf! (r) andr3/2Gjb¢!(r) as the function of the Euclidean distance
in the MA gauge with the U(k)xU(1)s Landau gauge fixing, in the SU(3) lattice QCD with*1 3 = 5.7,
5.8 and 6.0. The solid line denotes the logarithmic plaf&AGy,, (r) ~ r'/2K;(Mr) in the Proca formalism.

In Figll we show the logarithmic plot af*/2G0f (r) andr¥/2Gj%¥!(r) as the function of the
Euclidean distancein the MA gauge with the U(%)xU(1)s Landau gauge fixing. From the linear
slope onr®/2GS (r) in the range of = 0.3— 0.8 fm, the effective off-diagonal gluon mabfy is
estimated. Note that the gluon-field renormalization does not affect the gluon mass estimate, since
it gives only an overall constant factor for the propagator. We summarize in Table 1 the effective
off-diagonal gluon masM; obtained from the slope analysis@t=5.7, 5.8 and 6.0. Therefore,
the off-diagonal gluons seem to have a large nidgs~ 1.1— 1.2 GeV. This result approximately
coincides with SU(2) lattice calculatiof]].

Finally in this section, we discuss the relation between infrared abelian dominance and the
off-diagonal gluon mass. Due to the large effective nidgs, the off-diagonal gluon propagation
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Table 1: Summary table of conditions and results in SU(3) lattice QCD. In the MA gauge, the off-diagonal
gluons seem to have a large effective mikg ~ 1.1 — 1.2 GeV and the functional form in the range of

r =0.1-0.8 fm is well described with the four-dimensional Euclidean Yukawa functiceexp(—mysr)/r

with mggs ~ 1.3— 1.4 GeV.

lattice size B alfm] Mox[GeV] myi[GeV]

5.7 0.186 1.2 1.3
16* 5.8 0.152 1.1 1.3
6.0 0.104 1.1 1.4

is restricted within about/lo}f1 ~ 0.2fm in the MA gauge. Therefore, at the infrared scale gs
0.2fm, the off-diagonal gluonéf; (a# 3,8) cannot mediate the long-range force like the massive
weak bosons in the Weinberg-Salam model, and only the diagonal gkfpn%ﬁ can mediate the
long-range interaction in the MA gauge. In fact, in the MA gauge, the off-diagonal gluons are
expected to be inactive due to the large mislgg in the infrared region in comparison with the
diagonal gluons. Then, infrared abelian dominance holds forM_ "

4. Analysis of the functional form of off-diagonal gluon propagator in the MA gauge

In this section, we investigate the functional form of the off-diagonal gluon propa@%‘fp{r)
in the MA gauge in SU(3) lattice QCILP. In the previous section, we compare the off-diagonal
gluon propagator with the massive vector boson propagator and estimate the gluon mass. In fact,
the gluon propagator would not be described by a simple massive propagator in the whole region
ofr =0.1-0.8 fm.

There is the similar situation in the Landau gau@§|.[ The functional form of the gluon
propagator cannot be described by (ex[fsr’lr)/r3/2 with an effective mas# in the whole region
ofr =0.1— 1.0 fm. The appropriate form is the four-dimensional Euclidean Yukawa-type function
exp(—mr) /r with a mass parameten.

In the same way, in the MA gauge, we also compare the gluon propagator with the four-
dimensional Euclidean Yukawa function. In Bgwe show the logarithmic plot oﬁf,f{,(r) and
rGﬁBe'(r) as the function of the distancein the MA gauge with the U(xU(1)s Landau gauge
fixing. Note that the logarithmic plot chﬁfL(r) is almost linear in the whole region of= 0.1 —

0.8 fm, and therefore the off-diagonal gluon propagator is well expressed by the four-dimensional
Euclidean Yukawa functiode "' /r with a mass parameten,; and a dimensionless constant
A. The best-fit mass parametegs is given in Table 1 at each = 5.7, 5.8 and 6.0.

We comment on the four-dimensional Euclidean Yukawa-type propadEdpr If the func-
tional form of the off-diagonal gluon is well described by the four-dimensional Yukawa function,
we analytically calculate the off-diagonal zero-spatial-momentum propa%ﬁit,) =/ d3ngfL (r),
and obtain the spectral function by the inverse Laplace transformation. Similarly in the Landau
gauge[[9], we thus derive the spectral functig’® (w) of off-diagonal gluons in the MA gauge,

47TAIbef 47TA/\/ 2rrbff

pOﬁ(w):—WG(w—nbﬁ)+ (w_%ﬁ)1/25(w—”bﬁ)- (4.1)
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Figure 3: The logarithmic plot of GO (r) andrGJ%¢!(r) as the function of the Euclidean distanci the
MA gauge with the U(13xU(1)s Landau gauge fixing, using the SU(3) lattice QCD wit{ 463=5.7, 5.8
and 6.0. ForGflfL(r), the approximate linear correlaton is found.

5. Summary and Concluding Remarks

We have performed the first study of the gluon propagators in the MA gauge with thedW@)s
Landau gauge fixing in the SU(3) quenched lattice QCD. To investigate the gluon propagators in
the MA gauge, we have considered to derive the gluon fields analytically from the SU(3) link-
variables.

With this method, we have calculated the Euclidean scalar combir@ig(r) of the diagonal
and the off-diagonal gluon propagators, and have considered the origin of infrared Abelian dom-
inance. The Monte Carlo simulation is performed on thé laGice at3=5.7, 5.8 and 6.0 at the
guenched level. We have found that the off-diagonal gluons behave as massive vector bosons with
the effective masMgr ~ 1.1 — 1.2 GeV forr = 0.3— 0.8 fm. The effective gluon mass has been
estimated from the linear fit analysis of the logarithmic plot%?Gm(r). Due to the large value,
the finite-size effect for the off-diagonal gluon mass is expected to be ignored. The large gluon
mass shows that the off-diagonal gluons cannot mediate the interaction over the large distance as
r> Mo‘ﬂl, and such an infrared inactivity of the off-diagonal gluons would lead infrared Abelian
dominance in the MA gauge.

On the other hand, from the behavior of the diagonal gluon propa@gft(r) andr3/2GJbe!(r),
the diagonal gluons seem to behave as light vector bo§dls For the detailed argument on
Gﬁﬁe'(r), one should consider the finite size effect more carefully, because the diagonal gluons
would propagate over the long distance beyond the lattice size.

Finally, we have also investigated the functional form of the off-diagonal gluon propagator
Gﬁf{,(r) in the MA gauge. We show thaﬁgf{,(r) is well described by the four-dimensional Eu-
clidean Yukawa-type form with the mass parametgg ~ 1.3 — 1.4 GeV in the whole region of
r = 0.1— 0.8 fm. This indicates that the spectral functio?f (w) of the off-diagonal gluons in the
MA gauge has the negative-value regid]| as in the Landau gaug@&q, 20, 21].
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In this study, we investigate the off-diagonal gluon propagator. To be strict, the off-diagonal
gluon propagator consists of two scalar functions corresponding to longitudinal and transverse
components. Therefore, we will investigate each effective mass and the functional form of these
components.
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