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We present the results of an analysis of a 2+1 dimensional pure SU(N) Yang-Mills theory formu-

lated on a 2-dimensional spatial torus with non-trivial magnetic flux. We focus on investigating

the dependence of the electric-flux spectrum, extracted from Polyakov loop correlators, with the

spatial sizel , the number of coloursN, and the magnetic fluxm. The size of the torus acts a pa-

rameter that allows to control the onset of non-perturbative effects. In the small volume regime,

where perturbation theory holds, we derive the one-loop self-energy correction to the single-gluon

spectrum, for arbitraryN andm. We discuss the transition from small to large volumes that has

been investigated by means of Monte-Carlo simulations. We argue that the energy of electric

flux ~e, for the lowest gluon momentum, depends solely on~e/N and the dimensionless variable

x= λNl, with λ = g2N the ’t Hooft coupling. The variablex can be interpreted as the dimension-

less ’t Hooft coupling for an effective box size given byNl. This implies a version of reduction

that allows to tradel by N without modifying the electric-flux energy.
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1. Introduction

In this paper we will explore the electric-flux spectrum of a 2+1-dimensional SU(N) Yang-
Mills theory defined on a 2-dimensional spatial torus endowed with a chromo-magnetic flux. The
aim is to disentangle the dependence on the number of coloursN and the size of the torusl , fol-
lowing the idea of reduction introduced by Eguchi and Kawai [1, 2]. The size of the torus will
act as a control parameter that permits to explore the onset of non-perturbative dynamics. This
is so, because for smalll the effective coupling constant becomes small and perturbation theory
holds. Asl grows, the finite size effects, including the magnetic flux, should become irrelevant.
The way in which this takes place, and in particular the interplay with the largeN limit, might
shed some light into the processes relevant for non-perturbative dynamics. We will focus here for
simplicity on the 2+1 dimensional case that shares many of the non-perturbative properties of the
4-dimensional theory. There is an extensive literature on the subject of Yang-Mills 3-d fields and
largeN dynamics, for recent lattice reviews we refer the reader to [3].

2. Set-up and Perturbative Analysis

We will be considering SU(N) Yang-Mills theories defined on a spatial torus of sizel × l . In
the basis of constant transition matricesΓi, the gauge field connection has to satisfy the periodicity
condition:Ai(x+ l ̂) = Γ jAi(x)Γ†

j , with theΓi fulfilling:

Γ1Γ2 = exp
{

i
2πm

N

}

Γ2Γ1 , (2.1)

wherem is the magnetic flux. In the case thatm andN are co-prime, this equation defines the
matricesΓi uniquely modulo global gauge transformations. For simplicity we will assume thatN
is odd and co-prime withm in the following. The periodicity constraint on the gauge fields can be
solved by introducing a basis ofN×N matricesΓ̂(~pc) satisfying:

Γi Γ̂(~pc)Γ†
i = eilp c

i Γ̂(~pc) , (2.2)

where~pc = 2π~n
lN , with ni integers defined modulo N. Thus, there areN2 such matrices. An explicit

solution to the equation is:
Γ̂(~pc) = eiα(~pc) Γ− k̄n2

1 Γ k̄ n1
2 , (2.3)

wherek̄ is an integer satisfyingmk̄ = 1 modN, andα(~pc) an arbitrary phase factor. In this basis
we can Fourier decompose the gauge connection as:

Ai(x) = N

′
∑
~P

ei~P~x Âi(~P) Γ̂(~P) . (2.4)

The total momentum~P is quantized in units of 2π/(Nl) and can be decomposed as:~P = ~p+~pc,
with ~p = 2π~n/l , andni ∈ ZZ. The prime means that~pc =~0 is excluded from the sum, sinceAi(x)
has to be traceless. This can be interpreted by saying that the total momentum~P is composed of
two pieces: a colour-momentum part~pc and a spatial-momentum part~p. If we neglect the prime
in the sum, the range of values of~P is just that of a theory defined on a box of sizeNl ×Nl. The
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Figure 1: We show, for electric flux~e= (Nθ ,0) (left), and~e= (Nθ ,Nθ ) (right), the functionG(θ ) that
gives the one-loop correction to the energy of a one-gluon state, through Eq. (2.5). The blue line corresponds
to Eq. (2.6), while the red points are derived using a latticeregularization in the calculation of the self-energy.

formalism looks hence as if the theory had no colour, but was defined on a bigger spatial box with
effective sizeNl.

We will now analyze in perturbation theory the energy spectrum of one-gluon states. The first
remark is that, since zero momentum is excluded, the theory has a mass-gap even for smallNl.
At tree level in perturbation theory, the mass of a state withcolour momentum~pc is E0 = |~pc| =
2π|~n|/(Nl). Such states can be characterized in a gauge-invariant way in terms of the electric flux
~e, which is defined moduloN and related to~n through: ei = ε ji n j k̄. The gauge invariant operator
projecting onto a state of electric flux~e is a Polyakov loop windingei times around each of the
cycles of the 2-torus. The non-perturbative spectrum of such states can hence be obtained from
Polyakov loop correlators.

In perturbation theory the energy of electric flux can be determined by computing the gluon
self-energy on the twisted box (for examples in SU(2) see Refs. [4, 5]). Details of the calculation
at one-loop order will be presented elsewhere [6]. Here we simply provide the final expression that
will be used to analyze the numerical results in section 3. Putting everything together, we obtain
for the square of the energy of electric flux~ewith colour momentum~n:

E2(~e)
λ 2 =

(2π|~n|
λNl

)2
− 4π

λNl
G

(~e
N

)

, (2.5)

whereλ = g2N is the ’t Hooft coupling, which is dimensionful in 2+1 dimensions. The first order
correction to the tree level expression is given in terms of:

G
(~e

N

)

= − 1
16π2

∫ ∞

0

dx√
x

(

θ2
3 (0, ix)−

2

∏
i=1

θ3(
ei

N
, ix)− 1

x

)

(2.6)

with the Jacobi Theta function given by:

θ3(z, ix) = ∑
n∈Z

exp{−xπn2 +2π inz} . (2.7)

The dependence ofG on~e/N is exhibited in Fig. 1, for electric fluxes of the form~e= (Nθ ,0) and
~e= (Nθ ,Nθ).
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One important remark at this stage is that, once~n and~e/N have been fixed, the energy de-
pends exclusively on the variablex = λNl, which can be interpreted as the dimensionless ’t Hooft
coupling corresponding to an effective box of sizeNl. Based on our numerical results, we will
argue that this is the case even in the non-perturbative regime. This will imply thus a kind of re-
duction in whichN andl become interchangeable. A second remark in order is the non-analyticity
of G(θ) at θ = 0(mod1). This could give rise to a tachyonic instability in the energy of electric
flux for N → ∞, which has been previously discussed in the context of non-commutative geometry
in Ref. [9]. There it was presented as an evidence of spontaneousZN symmetry breaking. We will
come back to this issue when discussing the numerical results in section 4.

Let us finally mention that in order to arrive at the one-loop perturbative expression we have
used three different approaches: to compute the Euclidean gluon self-energy in the continuum and
on the lattice, and to use the Hamiltonian formulation. The lattice calculation has made use of the
results in Refs. [7],[8]. In Fig. 1, the lattice results forG(θ), extrapolated to the continuum limit,
are compared with the formula given in Eq. (2.6). There is perfect agreement between the two.

3. Numerical Results

In this section we will present the results of a lattice calculation of the electric-flux spectrum
in a twisted box as a function ofN, l and the magnetic flux. We start with aL0×L2 lattice with
twisted boundary conditions (l = La, with a the lattice spacing). It is possible to perform a change
of variables of the link matrices that allows to work with periodic links at the price of introducing
a twist dependent factor in the action:

SW = Nb∑
x

∑
µ 6=ν

(

N−z∗µν(x)TrPµν(x)
)

, (3.1)

wherezµν(x) = 1 except for the corner plaquettes in each (1,2) plane where it takes the value:

zi j (x) = exp
{

i
2πm

N
εi j

}

, (3.2)

with m the magnetic flux. We have performed Monte Carlo simulationswith this action employing
a heat-bath algorithm based on a proposal by Fabricius and Haan [10]. Four sets of(N,L,L0) values
have been generated: (5,14,48), (5,22,72), (7,10,32), and(17,4,32), with values of the magnetic
flux: m= 1, 2, for SU(5),m= 1, 2, 3, for SU(7), andm= 1, 3, 5, 8, for SU(17).

The electric-flux spectrum has been extracted from spatially smeared Polyakov loop correla-
tors. The spatial Polyakov loops, windinge times around the ˆıth direction of the torus, read:

Pi(t,~x, e) = Tr
{L−1

∏
s=0

Ui (t,~x+ ŝı)
}e

. (3.3)

The twist gives rise to non-trivial boundary conditions forthe loops:Pi(t,~x+L̂, e) = ze
i j Pi(t,~x, e),

that have to be considered when extracting the spectrum fromthe Polyakov loop correlators. In
practice, we project over the different colour-momentum states by computing the averaged corre-
lators:

C1(t, e, n) =
1
L2

L

∑
y,ỹ=1

exp
{

− i
2πn
LN

ỹ
}

〈P1(0, y̂, e)P†
1 (t, (y+ ỹ)̂, e)〉 , (3.4)
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Figure 2: For different values ofl , N, ande, we display the quantityδE2(e)/λ 2 = (E2 −E2
0)/λ 2 vs

x = λNl, whereE is the energy of electrix fluxe with momentum|~n| = 1, andE0 = 2 asinh(sin(π/(NL)))

is the lattice tree-level perturbative result.

with e= ε21nk̄. An analogous expression holds forC2(t, e, n). The energy is extracted from the
exponential decay at larget of the correlator.

A detailed account of the results will be presented in [6]. Here we will focus on a few examples
that illustrate the scaling of the electric-flux energies with x = λNl. We will focus on the minimal
momentum states with|~n| = 1 which have electric flux|~e| = k̄. According to our perturbative
calculation, for givene/N we expect energies to depend solely onx. Given thatN is prime, identical
ratios of e/N are not possible, nevertheless our data falls in three sets with similar values for
the ratio:(N,e) = {(5,1),(17,3)}; {(7,2),(17,5)}; {(5,2),(7,3)}. The dependence of the energy
squared onx is presented in Fig. 2. The scaling holds in all the range ofx analyzed which goes far
beyond the perturbative regime. A discussion of the resultswill be presented below.

4. Discussion

Our numerical results indicate that the energy of electric flux, in units of the ’t Hooft coupling,
depends solely on the variablex = λNl and the value ofe/N, at least for the minimal momentum
|~n| = 1. This does indeed hold for the perturbative expression. Let us look now at the expectation
in the largex regime, where strings of electric flux are expected to be formed and the energy
should grow linearly with the box sizel . A large amount of lattice results hint in the direction
that flux tubes can be described in terms of an effective string picture based on the Nambu-Goto

5
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Figure 3: In the upper panels we display several fits ofδE2(e)/λ 2 to Eq. (4.4). The symbol codes are
the same as in Fig. 2. Different lines correspond to: (combined) α = G(e/N), β and γ free; (1-loop)
α = G(e/N), β = γ = 0; (string)α = 0, β andγ free. The lower panels displayδE2(e)x2/λ 2.

action [3]. In the presence of a constant background magnetic field B, the Nambu-Goto prediction
for a closed-string winding~e times around the torus is given by:

E2(~e)
λ 2 =

( σ |~e|
λ 2N

)2
(λNl)2− πσ

3λ 2 +∑
i

(εi j ej B

λ l

)2
, (4.1)

whereσ is the fundamental string tension. The last term on the righthand side of this formula
can be easily mapped onto the tree-level perturbative expressionE2

0 by taking into account the
relation between~n and~e, and identifying the magnetic field withB = 2πm/N. If the Nambu-Goto
expression would hold, two different regimes would take place in terms of the scaling variablex:

• Low x, where:
E2(~e)

λ 2 − E2
0(~e)

λ 2 = − 4π
x

G
(~e

N

)

. (4.2)

• Largex, where:
E2(~e)

λ 2 − E2
0(~e)
λ 2 =

( σ |~e|
λ 2N

)2
x2− πσ

3λ 2 . (4.3)

This would be fully consistent with our hypothesis on thex scaling, once~e/N is fixed. A formula
that captures the asymptotic behaviour in both the low and largex regimes is:

δE2(e)
λ 2 =

E2(e)
λ 2 − E2

0(e)

λ 2 = −4πα
x

− πβ
3

+ γ2x2 . (4.4)
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Fitting this expression to our data gives the results displayed in Fig. 3. The fits are restricted to the
largex region withx > 20 (x > 30, for N = 17, e= 3). Two different fits are presented: (a) fixing
α = G(e/N), denoted by ‘combined’, and (b) fixingα = 0, denoted by ‘string’. In all cases, the
‘combined’ fit has a slightly betterχ2 per degree of freedom than the ‘string’ fit. In addition, we
display the 1-loop expression. Although the combined formula fails to reproduce the results in the
intermediatex region it describes qualitatively quite well the data. One remarkable observation is
that for smallx it improves the one-loop result in the correct direction. This is clearly observed
in the low panels of Fig. 3 whereδE2x2/λ 2 is plotted to enhance this effect. We are at present
exploring alternative parametrizations to improve the fit in the intermediatex regime.

One final remark refers to the possible existence of tachyonic instabilities. One could use
Eq. (4.4) to see in which instances the energy remains non-tachyonic for all values ofx. A more
thorough analysis will be presented in [6]. Let us just mention here that our results indicate that it
suffices to keep bothm andk̄ of orderN to avoid the tachyonic behaviour. This coincides with the
criteria introduced in [2] for twisted Eguchi-Kawai reduction to hold at largeN.
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