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We present the results of an analysis of a 2+1 dimensional UN) Yang-Mills theory formu-
lated on a 2-dimensional spatial torus with non-trivial metgc flux. We focus on investigating
the dependence of the electric-flux spectrum, extracted folyakov loop correlators, with the
spatial sizd, the number of colourhl, and the magnetic flumi. The size of the torus acts a pa-
rameter that allows to control the onset of non-perturleagifects. In the small volume regime,
where perturbation theory holds, we derive the one-lodpesergy correction to the single-gluon
spectrum, for arbitrarfd andm. We discuss the transition from small to large volumes tlaat h
been investigated by means of Monte-Carlo simulations. Weethat the energy of electric
flux &, for the lowest gluon momentum, depends solelyggN and the dimensionless variable
x=ANI, with A = g®N the 't Hooft coupling. The variablecan be interpreted as the dimension-
less 't Hooft coupling for an effective box size given ly. This implies a version of reduction
that allows to tradé by N without modifying the electric-flux energy.
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1. Introduction

In this paper we will explore the electric-flux spectrum of-el2limensional SU(N) Yang-
Mills theory defined on a 2-dimensional spatial torus endbweéh a chromo-magnetic flux. The
aim is to disentangle the dependence on the number of colvarsd the size of the tords fol-
lowing the idea of reduction introduced by Eguchi and Kawlaid]. The size of the torus will
act as a control parameter that permits to explore the orisgreperturbative dynamics. This
is so, because for smdllthe effective coupling constant becomes small and pettiorbséheory
holds. Asl grows, the finite size effects, including the magnetic flthgudd become irrelevant.
The way in which this takes place, and in particular the piggr with the largeN limit, might
shed some light into the processes relevant for non-pettivebdynamics. We will focus here for
simplicity on the 2+1 dimensional case that shares manyeohtn-perturbative properties of the
4-dimensional theory. There is an extensive literaturehensubject of Yang-Mills 3-d fields and
largeN dynamics, for recent lattice reviews we refer the reade8}o [

2. Set-up and Perturbative Analysis

We will be considering SW) Yang-Mills theories defined on a spatial torus of dizel. In
the basis of constant transition matriédgsthe gauge field connection has to satisfy the periodicity
condition: Aj(x+17) = FJ-A;(X)F}r , with theT; fulfilling:

. 21m
M= exp{l T} M 2.1)

wherem is the magnetic flux. In the case thatandN are co-prime, this equation defines the
matricesl’; uniquely modulo global gauge transformations. For siniglive will assume thalN

is odd and co-prime witim in the following. The periodicity constraint on the gaugédsecan be
solved by introducing a basis dbf x N matricesli(ﬁc) satisfying:

i (por! =P (pe) | (2.2)

wherep® = % with n; integers defined modulo N. Thus, there Bilesuch matrices. An explicit
solution to the equation is:

F(pe) = g0 o kerkn (2.3)

wherek is an integer satisfyingk = 1 modN, anda (p°) an arbitrary phase factor. In this basis
we can Fourier decompose the gauge connection as:

Bog A  —. A  —

Ax) =S eFAP)IFP) . (2.4)

The total momentun® is quantized in units of &/(NI) and can be decomposed #&= p+ p°,
with p = 27mmi/I, andn; € Z. The prime means thgt® = 0 is excluded from the sum, sinég(x)
has to be traceless. This can be interpreted by saying teaotal momentun® is composed of
two pieces: a colour-momentum pgit and a spatial-momentum p4st If we neglect the prime
in the sum, the range of values Bfis just that of a theory defined on a box of siéx NI. The
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Figure 1. We show, for electric flud = (N6,0) (left), andé= (NO,N8) (right), the functionG(8) that
gives the one-loop correction to the energy of a one-gluate sthrough Eq. (2.5). The blue line corresponds
to Eq. (2.6), while the red points are derived using a latiéggilarization in the calculation of the self-energy.

formalism looks hence as if the theory had no colour, but vedimdd on a bigger spatial box with
effective sizeNl.

We will now analyze in perturbation theory the energy speuotof one-gluon states. The first
remark is that, since zero momentum is excluded, the theasyahmass-gap even for smalll.
At tree level in perturbation theory, the mass of a state witlour momentunp® is Eg = |p°| =
2mjn|/(NI). Such states can be characterized in a gauge-invariantnatayms of the electric flux
8, which is defined modultN and related tai through: g = EjinjE. The gauge invariant operator
projecting onto a state of electric fl&is a Polyakov loop windingg times around each of the
cycles of the 2-torus. The non-perturbative spectrum oh siates can hence be obtained from
Polyakov loop correlators.

In perturbation theory the energy of electric flux can be mheiteed by computing the gluon
self-energy on the twisted box (for examples in SU(2) sees Héf 5]). Details of the calculation
at one-loop order will be presented elsewhere [6]. Here mglyi provide the final expression that
will be used to analyze the numerical results in section 3tifRueverything together, we obtain
for the square of the energy of electric flexvith colour momentunm:

2
- G () e

whereA = g2N is the 't Hooft coupling, which is dimensionful in 2+1 dimémss. The first order
correction to the tree level expression is given in terms of:

&y 1 edx g, 2 e 1
S(N) =16y i (BOX -6 -5) (2.6)
with the Jacobi Theta function given by:
63(zix) = %exp{—xrm2+2ninz} . (2.7)
ne

The dependence @ on&/N is exhibited in Fig. 1, for electric fluxes of the foren= (N6,0) and
€= (NO,N0).
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One important remark at this stage is that, oricnd&/N have been fixed, the energy de-
pends exclusively on the varialbte= ANI, which can be interpreted as the dimensionless 't Hooft
coupling corresponding to an effective box of sidé Based on our numerical results, we will
argue that this is the case even in the non-perturbativeneegihis will imply thus a kind of re-
duction in whichN andl become interchangeable. A second remark in order is theanalyicity
of G(0) at 8 = 0(mod1). This could give rise to a tachyonic instability in the enedf electric
flux for N — oo, which has been previously discussed in the context of momAtutative geometry
in Ref. [9]. There it was presented as an evidence of spoote2y, symmetry breaking. We will
come back to this issue when discussing the numerical sasusiection 4.

Let us finally mention that in order to arrive at the one-lo@ptprbative expression we have
used three different approaches: to compute the Euclidien gelf-energy in the continuum and
on the lattice, and to use the Hamiltonian formulation. Tdtéde calculation has made use of the
results in Refs. [7],[8]. In Fig. 1, the lattice results f8(6), extrapolated to the continuum limit,
are compared with the formula given in Eg. (2.6). There i$gqmtmagreement between the two.

3. Numerical Results

In this section we will present the results of a lattice ciltian of the electric-flux spectrum
in a twisted box as a function &, | and the magnetic flux. We start withLg x L? lattice with
twisted boundary condition$ £ La, with a the lattice spacing). It is possible to perform a change
of variables of the link matrices that allows to work with jpelic links at the price of introducing
a twist dependent factor in the action:

Sw=Nby ; (N ~Z,,(%) Trp,w(x)) , (3.1)
X U#£v
wherez,, (x) = 1 except for the corner plaquettes in each (1,2) plane whéakss the value:

zj (X) :exp{i z%ﬂsij} , (3.2

with mthe magnetic flux. We have performed Monte Carlo simulatieitis this action employing
a heat-bath algorithm based on a proposal by Fabricius aad [48]. Four sets ofN, L, L) values
have been generated: (5,14,48), (5,22,72), (7,10,32)(®nd,32), with values of the magnetic
flux: m=1, 2, for SU(5),m= 1, 2, 3, for SU(7), andn= 1, 3, 5, 8, for SU(17).

The electric-flux spectrum has been extracted from spatatieared Polyakov loop correla-
tors. The spatial Polyakov loops, windiedimes around th&fi direction of the torus, read:

L-1 e
R(t,% € :Tr{ [Lui (t,2+sf)} . (3.3)

The twist gives rise to non-trivial boundary conditions flee loops:R(t, X+ Lj, €) = z] R(t, X, €),
that have to be considered when extracting the spectrum tihenPolyakov loop correlators. In
practice, we project over the different colour-momentuatest by computing the averaged corre-

lators: ]
1 21 - o

5 Y ep{—iTrIH RO OP L y+95e) . (34)
yy=1

Ci(t,en) = 2
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Figure 2:  For different values of, N, ande, we display the quantitpE?(e)/A? = (E%2 — E2)/A? vs
x = ANI, wherekE is the energy of electrix flue with momentumi| = 1, andEp = 2 asinl{sin(rt/(NL)))
is the lattice tree-level perturbative result.

with e= &1nk. An analogous expression holds fo4(t, e n). The energy is extracted from the
exponential decay at largeof the correlator.

A detailed account of the results will be presented in [6]réHge will focus on a few examples
that illustrate the scaling of the electric-flux energieghwi= A NI. We will focus on the minimal
momentum states withii| = 1 which have electric flufg = k. According to our perturbative
calculation, for givere/N we expect energies to depend solelyoiven thatN is prime, identical
ratios ofe/N are not possible, nevertheless our data falls in three sigssimilar values for
the ratio:(N,e) = {(5,1),(17,3)}; {(7,2),(17,5)}; {(5,2),(7,3)}. The dependence of the energy
squared oixis presented in Fig. 2. The scaling holds in all the rangeanfalyzed which goes far
beyond the perturbative regime. A discussion of the resuiltdbe presented below.

4. Discussion

Our numerical results indicate that the energy of electuix, fin units of the 't Hooft coupling,
depends solely on the variable= ANI and the value o&/N, at least for the minimal momentum
|| = 1. This does indeed hold for the perturbative expressiohuséook now at the expectation
in the largex regime, where strings of electric flux are expected to be éafrand the energy
should grow linearly with the box size A large amount of lattice results hint in the direction
that flux tubes can be described in terms of an effectivegsiinture based on the Nambu-Goto
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Figure 3: In the upper panels we display several fitsd&?(e)/A? to Eq. (4.4). The symbol codes are
the same as in Fig. 2. Different lines correspond to: (comtbim = G(e/N), 3 andy free; (1-loop)
a =G(e/N), B = y=0; (string)a = 0, B andy free. The lower panels displ&E?(e)x?/A2.

action [3]. In the presence of a constant background magfield B, the Nambu-Goto prediction
for a closed-string winding times around the torus is given by:

Ez(é) olg[\2 5 TIO &jejB\2

52 = (o) AN _W+Z( )
whereo is the fundamental string tension. The last term on the itigimd side of this formula
can be easily mapped onto the tree-level perturbative ex'pmeEg by taking into account the

relation betweeim andg, and identifying the magnetic field with = 2rmm/N. If the Nambu-Goto
expression would hold, two different regimes would takegla terms of the scaling variabie

(4.1)

e Low X, where:

E%@® E2(® A _ /&
A2 A2 T X (N) (4.2)
e Largex, where:
E’(®) ES(E) _(ofg\2, mo
Az A2 :(/\ZN)X_ﬁ 43)

This would be fully consistent with our hypothesis on #hscaling, once8/N is fixed. A formula
that captures the asymptotic behaviour in both the low argebaregimes is:

e Bl Eo_ i 10

A2 A2 A2 X (4.4)
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Fitting this expression to our data gives the results djgulan Fig. 3. The fits are restricted to the
largex region withx > 20 (x > 30, forN = 17, e = 3). Two different fits are presented: (a) fixing
o = G(e/N), denoted by ‘combined’, and (b) fixing = 0, denoted by ‘string’. In all cases, the
‘combined’ fit has a slightly bettex? per degree of freedom than the ‘string’ fit. In addition, we
display the 1-loop expression. Although the combined fdenfiails to reproduce the results in the
intermediatex region it describes qualitatively quite well the data. Ommarkable observation is
that for smallx it improves the one-loop result in the correct direction.isTik clearly observed
in the low panels of Fig. 3 wher8E?x?/A2 is plotted to enhance this effect. We are at present
exploring alternative parametrizations to improve theffithe intermediate regime.

One final remark refers to the possible existence of tacloymstabilities. One could use
Eq. (4.4) to see in which instances the energy remains rahydaic for all values ok. A more
thorough analysis will be presented in [6]. Let us just n@mtiere that our results indicate that it
suffices to keep botmand k of orderN to avoid the tachyonic behaviour. This coincides with the
criteria introduced in [2] for twisted Eguchi-Kawai rediact to hold at largeN.
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