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The fermion bag approach provides new solutions to signlenod Here we show this by using
a simple example of a lattice Yukawa model constructed wabgered fermions and containing
a Z, chiral symmetry. We argue that in the conventional formataof the model the fermion
determinant is real but not necessarily positive. Howewben formulated in terms of fermion
bags, the sign problem is absent. The solution requiresetmidnic part to be formulated in
terms of fermion bags, while the bosonic part needs to bemeftated in world-line variables.
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1. Introduction

Lattice field theories containing fermions often suffer from sign problemsrigetior more
space-time dimensions and solving them continues to be an important chafangeus examples
where sign problems have hindered progress, include lattice QCD in teenme of a baryon
chemical potential and Fermi liquids with purely repulsive interactions. &g problems are
considered very difficult and any progress in solving them will be akbtie@ugh. Interestingly,
many simpler lattice field theories including four-fermion models and Yukawa Is@dieo suffer
from sign problems in the conventional formulations and in order to solve thisnmecessary to
double the fermion degrees of freedom [1, 2]. Recently a new apiptodattice field theories has
emerged in which partition functions are written in the world-line representggjofrermion sign
problems are then solved by summing over the world-lines in regions of ¢jpaeeefered to as
fermion bags [4]. In this new approach, some sign problems, that aserirm the conventional
approach, can be solved [5, 6]. Using a simple exampleZafsymmetric Yukawa model, here we
show how the new fermion bag approach solves some unsolved signmeoble

2. The Sign Problem

Let us consider a simple lattice Yukawa model in which staggered fermionadht®ith an
Ising field. The action of the model is given by

S= Ty (Do) U+ Slo] (2.1)
Xy

wheret,, Y are Grassmann valued fields on the latticesitéth V sites. The Ising fielary = £1
is governed by the action,

Slo]=-B ;) 0x0y. (2.2)
Xy,

Here (xy) refers to nearest neighbor sites. The mab#o] is theV x V Dirac operator whose
matrix elements are given by

(D*[0])xy = =9 Ox 8y + (D¥)xy, (D¥)xy="> NaxTxy, (2.3)

whereD® is the massless staggered Dirac matrix and the fluctuating mass term depehds on
Ising field. The constan{8 andg are the couplings of the model which are assumed to be positive.
The indexa represents directiom x are the staggered fermion phase factors and

1
Dgy = é(ax,yﬂi —Otay)- (2.4)

It is easy to verify that the action in (2.1) is invariant under the follon®u2) transformations :

<$’)‘(> —V (;pjz) at even sites (wx pr> — (wx pr) VT at odd sites (2.5)

whereV € SU(2) is part of the flavor symmetry and has been recently used in [7]. In addition
the action is also invariant under the followidg chiral symmetry:yy — i&kx, Py, — i&P, and
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ox — —0x Whereg, = 1 is the site parity. At small values @, when the Ising field describes
massive particles, one can imagine integrating overathfeeld and the theory is equivalent to a
four-fermion model.

In the conventional approach, after integration over the Grassmarables;, the partition
function of the model is given by

z=% e>l9 Det(D%[0]). (2.6)
o]

Due to the fluctuating mass term, Dt[o]) can only be guaranteed to be real but not positive.
This is the origin of the sign problem in the conventional approach. In timerstry broken phase
whereoy ~ 0y + Ny, as long as)x < ogp the sign problem can be expected to be mild or absent.
However, close to critical points whemg — 0, the sign problem can in principle become severe.
We will show below that it is possible to reformulate the partition function usingdsine and
fermion bag variables such that the sign problem is absent.

3. Fermion Bag Approach

Instead of intergrating over all the fermion degrees of freedom, the el@adbthe fermion bag
approach is to collect fermion degrees of freedom into groups so thgtatitey over each group
produces positive answers. While this is not always possible, we loavel fthat the approach
does solve at least some sign problems. The sign problem #ypthiekawa model discussed in the
above section is one example where the fermion bag approach succeelsig the sign problem

completely.
We begin with the partition function for the action in (2.1), which is given by
7 — Z (J‘l eﬁ0x0y> /[dwdw]efixwa(Dso)xyWy negUxWXlI’x. (3_1)
(o] ] X
We then expand
9o — 1+goxgy iy = Z) (ngTﬁxwX) ™ (3.2)
ny=0,1

where in the last step we have introduced a discrete monomerffiieldf n, = 1 then the site
contains a monomer, otherwise the site is considered empty. In terms of this moinché is
easy to write the partition function as

zZ=3 {Zﬂ Py azlaZZ...azk} X

o] &y,
| [iawdyle POV, g, GT Y W] (3

where we assume the monomer configurafipontaindk monomers located at the sitBsz,, ... z.
Let us refer to the term in the curly bracket as the bosonic part and tndrig¢he square bracket
as the fermion part.

Let us first focus on the fermionic part which is a Grassmann integral. Weriote the
standard identities :

/ dg, dyx Uk = —1, / [gyle 2oPMly — Det(M). (3.4)
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Figurel: The left figure illustrates a fermion bag configuration in mensions with ten monomers. Thus
the configuration contains 11 fermion bags, 10 of which araenters with weight—g) each and one large
free fermion bag with weight D&tV=) whereW= is the free staggered Dirac matrix but on a lattice which
does not contain the ten monomers. The right figure illustribw the single large free fermion bag splits
into many smaller bags as the number of monomers increase.

Using these the full fermionic integral can be performed in two steps. Faattegrate over Grass-
mann variables associated with the monomer site®, ...z.. Since the sources already contain
bothy andy at each of these sites, we can simply set to zero the terms in the expontih€on
ing these sites. Let/®[n| be the(V — k) x (V — k) matrix obtained fromD® by dropping the
rows and columns correspondingz0z, ...z.. The Grassmann integral on each of kimonomer
sites gives a-1, while the integral over the remaining Grassmann variables yieldd\Dgt]).
Mathematically this means

[ / [dpdyle 2Ol gI, i, G, U, .. T, L,uzk]
— (-0 [ [dpay] e 5B — o Detwolm]) > 0. (35)

In the last step we have sgt1)k = 1 since Defw®[n]) # 0 only if k is even. Sinc&®[n] is the
same as the free staggered fermion matrix, its determinant is positive.

In the above approach we divided the Grassmann variables into thoséedsd with monomers
and those associated with the remaining free sites. Thus, every mononadrthedemaining free
sites together fornfiermion bags The integral over the Grassmann variables within each fermion
bag is called the weight of the fermion bag. The weight of each monomeg snd the weight
of the free fermion bag containing all the remaining sites is(\W&t[n]). Since the number of
monomers is always guaranteed to be even the product of all the ferngondights is positive.
Wheng is large, then the single large fermion bag containing free sites can split intlesivegs
(see figure 1). As pointed out in [8, 9], we can also use Wick’s thedoeshow that

DetW<[n]) = Det(D¥)Det(G¥[n]) (3.6)
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Figure 2: The left figure illustrates the world-line configuration afritls and monomers. Each site must
contain an even number of bonds if it does not have a monomér otherwise it must contain an odd
number of bonds. In the right figure we connect all the mongntegether to represent a dual fermion
bag whose weight igDet(G%[n]) and show it along with the world-line configuration of thetlégure.
Configurations of this type contribute to the parition fuoot

whereG® is ak x k free propagator matrix for fermions hopping between the monomers. Equa-
tion (3.6) is a duality relation and from the dual view point, the set of monomersfesithions
propagating freely through them behaves as a dual fermion bag with wg&@et(G®[n]). This is
shown in the right figure in figure 2.

Having shown that the fermionic integral is positive, next we focus ountie to the bosonic
term in (3.3) which is clearly not positive as it stands. Using the identity

%% — cost(B)[1+tanh(B)oxay] = costB) 5 (tanh(B)oxay)*! (3.7)
b(x)/):071
on each bond, we introduce a discrete dimer fibJdvhere a bond contains a dimerf,,, = 1.
We can then rewrite

%U 5% 0,,0y,...05 = (cosr(B))dV > ﬂ (tanh(B))Po {

bl xy, lo

Me*} @9

wherey is the total number dimers that touch the sif@us the number of monomers on that site.
The sum over the Ising field can be performed using the relation

Z(O-X)}(/ = 26y4<,even (3.9)

Ox

which says that only dimer configurations that contain an gyext each lattice site contribute to
the path integral. Thus, we see that the bosonic part can be rewritten as

Pu% g, 0,...05 = 2 (cosr(ﬁ))dv S ﬂ(tank(ﬁ))bw [ 3.even (3.10)

{a] {xy [b] (xy
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which contains only positive terms.
Thus, substituting the results of (3.5), (3.6) and (3.10) into (3.3) we cé#e tire partition
function as a sum over confgurations of monomers and difbemssuch that

dv
Z:2V(cosr([3)> Det(D®) Y ¢ (U(tanr(ﬁ))bmo M 5w7even) Det(G®[n))  (3.11)
[b,n| X X
which is free of sign problems and can be used to design Monte Carlo algserith

4. Discussion

Using a simple model we have shown that some sign problems that seem biesaivthe
conventional approach can be completely solved in the fermion bag abpr®ame sign problems
in more complex models with continuous symmetries and those involving Wilson fesroem
also be solved using similar ideas [6]. In particular we can study foonifer models of QCD
with interesting chiral symmetries.

A class of Yukawa models where the new solution is applicable can be tédzad by the
action

S= S {WDxy+ XD xyXy} — 3 (1 BWX — G2 Xl) +So(@, ¢) (4.1)
Xy X
wherey, Y, x, x are independent Grassmann fielgs¢ are complex boson fieldgy, g, are real
positive couplings. Further, the bosonic act®, ¢ ) has the property that anykzboint correla-
tion function

/[d(pd¢]e*5°(g(l...cg<k¢;‘l...¢§‘k ~Sap 4.2)
f

can be expressed as a sum over configurafignsith positive weight<2[b] that are calculable in
polynomial time. In other words a solution to the bosonic sign problem inlth@oiht correlation
function exists. Worldline representations are known to yield such solytldnd 2].

In all cases where fermion sign problems have been solved, some tramispairing mecha-
nism exists. It may be hidden in the original formulation and require a newdlation to make the
pairing transparent. When the pairing is unclear, sign problems remainadggj. In the future
it is important to focus on problems without an obvious pairing mechanism.
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