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1. Motivations

When we construct interacting supersymmetric theories on lattice, we must take care of a
Leibniz rule on lattice. A no-go theorem on the rule for an infinite volume system on lattice has
been proved by us [I]. In its proof, there are two important clues, i.e. translational invariance
and locality for an infinite system. The holomorphic function property associated with a lattice
operator can decsribe those both clues. To manipulate the locality in a finite volume system, we
must seek another discrete version of holomorphism which expresses translational invariance and
locality. Corresponding to a certain translational invariant operator, a discrete function instead of
a complex function can be defined and we can describe it as a local operator in the finite volume
system.

There is a puzzling situation between a multi-flavor system and the matrix representation of
an infinite flavor system which matrix product and a commutator difference operator is satisfied
with the Leibniz rule [2]]. To the contrary, there is a Leibniz rule no-go theorem on lattice for the
finite flavor case. Cannot we recognize a matrix representaion as inifinite flavor number limit of a
multi-flavor system? In order to solve the problem, we must analyze the finite number case of the
flavor N and the lattice size N which implies the spatial volume.

2. Definition of a local lattice theory

In this article, we treat a one-dimensional system. The extention to higher dimensions can be
realized by the direct product of higher dimensional coordinates. We shall start with a setup for a
local lattice theory in a finite system. The system size and lattice constant are denoted as N and
ar = 1, respectively. We impose a the periodic boundary condition, ¢, = ¢, n on any lattice field.

A general difference operator on lattice is defined as

N
(D(P)n EZDnm¢m7 (21)

where Y~ D,,, = 0 due to a vanishing constant mode. For a product rule, we generally define as

N
(0 XM=Y CopeOmTe- 2.2)
ml

In the next step, we concentrate on translational invariant theories from general lattice ones '. As
the result, the difference operator and the product rule have the following property,

Dnm:DnH(erk:D(n—m):D(n—m-l—N) (23)

and

C

n

ot = Crskmek tak =Cn—Lm—0) =C(n—L+N,m—{) =C(n—{,m—L+N), (2.4)

IThe translational invariance strongly connects with the momentum conservation law. The strange momentum
conservation on lattice can be realized as Bl .
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where the periodic boundary condition is used. By N-root of unity,

2mia 2nib 2mi

Weg=enN =0y, zp=e N —a)N, wN_eN,cof\\,’:l, (2.5)

we define "momentum" representations and their complex extentions,

A N N
Dy =Y wi'D(m) =Y a"

N eN
Z a)[E/a-‘rlS )mD<’n)7

m

Dgtien

N N
Cop = Zw?zZC(n,m) = Z a),‘\’,’"M”C(n,m),

m,n

A (b
Corienpriny = Z e RN (), (2.6)

of the difference operator and the product rule where we must note that indices a,b are discrete
momentum labels. The locality in a finite volume system is defined as

ID(—n)| <Ke ¥ | x>0, for 1 << |n] << N, 2.7)

for large N.
Using the orthogonality and the completeness property,

Z 0 = NSy, Z V= N80, 2.8)

the sufficient condition for locality in the finite system is that there exists nonzero finite € with

mfx{ |Davien| } = O(N°), YS%X{ |Coienprinn| } = O(N), (2.9)

because

N
n a+l£N 1
v Dyyien =— W'D, =D(—n),

1 ¥ .
D(=m)| < = ¥ |Dasien| e 2 < max { [Dayien| } e 271, (2.10)

a

where the first equality is similar to the Cauchy’s integral theorem about a complex function owing
to independence on €. For the rule C, there are similar inequalities. On the other hand, in the case
of

ID(—n)| <Ke ™" | x>0, for 1 << |n| << N, 2.11)

with
K+2me >0, (2.12)
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its necessary condition can be verified as

N

N
iEN
Dasien| = | Loy "D (m) | <
m

M=

For product rule, similarily, in the case of

|C(—m,—n)| < Ke XIM=2 e 50,4 >0,

with
K+2me >0,A +2xm >0,

the necessary condition can be verified as

i w]r\;z(a+i£N)+n(b+inN)C (

éa+isN,b+inN} = m,n)

m,n

N
< Zefzn:(strnn) ]C(m,n)]

< Kﬁ, e (xEZmE)m[=(AL2mn) ]l — ¢ (NO) .

m,n

N
o~ 2mem |D (m) ‘ < Kze—(lci27r€)\m| —
m

O(N°). (2.13)

(2.14)

(2.15)

(2.16)

In the summary of this section, we have proposed that (2.9) is the necessary and sufficient

conditions for the locality in a finite volume system.

3. Finite size no-go theorem for Leibniz rule on lattice

A no-go theorem states that translation invariance, locality, a Leibniz rule and nontrivial prod-

uct cannot be simultaneously satisfied on a finite volume lattice. The Leibniz rule by using only

translation invariance condition can be rewritten as

A A A

Cup(Dayp—Da—Dp) = 0. (3.1)
For any a and b, if C’QJ, # 0, then @B.J) says
Doy —D,— Dy =0. (3.2)
The general solution of (3.2)is given by
N a a
D, = ZD}’ =< q. 3.3)
The solution (@3] is SLAC-type [B]] owing to
Y =N =eP = aqcp, (3.4)
and is non-local because of
. 1Y . 1Y , Dy . 0
max {|Dasien|} > T} [Datien | = 5 Y latieN|| == = O (N') # O(N). (3.5)
a a
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If C’(Lb is nontrivial, then D(n) is SLAC-type and it is nonlocal. q.e.d

One of possible solutions may be the case that D is local but C is trivial or nonlocal. We can
illustrate one example: émb =K&u4py . IfK = O(N?), then the product rule is trivial which leads
us to a trivial continuum limit. On the other hand, if K = O(N'), then it is just nonlocal. The real
space expression is

K (-
Clmn = C(l —m, - I’l) = ﬁ5m,nw1\1 (t=m) (36)
Its Leibniz rue realization is the followings,
Dy =D,+Di_,. (3.7

This relation is not difficult to construct its local solutions. Using one of these solutions, we can
write an explicit supersymmetric interacting action,

fD¢ Do +if-Dy+F-F+% F (9% 9)+igp- (P xy) (3.8)
o x= Zmn, (9% ), chmmmxl (3.9)

where the supersymmetry can be defined as

09 = ey + YE,
Sy = e(iDP +F), Sy =& (—iD +F),
SF = —ieDy —iEDy. (3.10)

4. Multi-flavor system and matrix representation

In a finite multi-flavor system on lattice, no-go theorem on a Leibniz rule can be proved [
but there exists the Lebniz rule through a matrix product rule in the matrix representation of an
infinite flavor system [2]]. This apparent inconsistency or the curious flavor limit can be solved by
classifying two kinds of flavors after appropriate flavor diagonalization.

For a finite flavor Ny and a finite volume N system, product rule and a difference operator are
defined as

N,N¢ N,N¢
(pxx)f=Y Chiroiy:, (Do)=Y D (4.1)
m,n,q,r m,q

where indices p, g, r are flavor ones. From these translation invariance, we introduce the following
notation,
CH" =CP"(m—1,n—1), DV = DPl(m—1). 4.2)

Imn —

The w-representations(N-root expressions) of the product rule and the difference operator are ex-
pressed as

N
il = Z oy MCP (m,n), DY =Y @y DM (m). 4.3)

m.,n m
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Their flavor matrix forms are
(¢lw),, = ¢l (Dr),, = DI (4.4)
The Jordan’s standard form of D leads us to the following parametrization in the flavor matrix,
D —UDU " =Dyjge+E-, (4.5)
where

qu

diag — A{5pqv Eiq =€/ 0pgt1, A{)’ =0, & =0orl. (4.6)

Then, we can write the Leibniz rule by a flavor matrix form

AP AG_Ar \Apar _ ppar
( L+m — AL~ AM) Crm =R u(€), 4.7
where
prqr — _op Ap—lar | qtlAp gl | 41 Apgrtl
Riy(E)=—€ Cry " +e Coy &y Coy - (4.8)

For a finite flavor system, since

1< pgr<Ny, € =)0 =¢y <o, (4.9)
it follows as
Rﬁf](s) =0. (4.10)

Therefore, the Leibniz rule of a finite flavor by a flavor matrix form is rewritten as
A AT _ AT\ APIT — HPIr APAT
(A7 y— AL —Ay) CT%y = DI5,CLY = 0. (4.11)

The solution is easily found as
Dy%, =0 or C7%, =0. (4.12)

D’Z% = 0 case leads us to Ap(wa) = 0 in the local lattice theory framework, using a finite system
no—/go theorem which is proved in the previous section. Consequently, for a finite-flavored infinite
volume system, we have the following two kinds of flavors; flavor type-A means that it has a trivial
difference operator, A? (w) = 0 and flavor type-B does a trivial field product C‘fz\f] = 0 between its
flavors. |
The next stage is the analysis for the matrix representation of an infinite flavor and infinite
volume system. In the representation, we treat field variables, ®;; where both i and j run from
1 t0 Nmawix- We must consider an N = Ny = 2Npa4ix case because the following identification is
realized,
@, = ¢,fj(<i’+‘j!)>. (4.13)
The product rule between matrices leads us to
Cpqr o< 8p7q+r8nfl,q517m,r) (4 14)

Imn

and the commutator difference operator corresponds to
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_ p=(i—J)
d, ®|;j = (D¢)n:(i+j), (4.15)
where d implies some anti-hermitian Nyarix X Nmatrix matrix. For this matrix representation, since

we impose the usual periodic boundary condition for both a lattice space and a flavor space, the
following relation

RYY(€) 0, (4.16)

is generated inevitably. This relation is the essential difference for usual finite flavor systems.
Furthermore, owing to R # 0, there is always mixing between coupling-free flavor-B and motion-
free flavor-A.

5. Summaries

We have proved a Leibniz rule no-go theorem in a finite volume system. Instead of holomor-
phic functions for infinite volume systems, we used the discrete bounded functions. Then, we can
classify cases keeping the rule on lattice into the following three ones:

1 If we take a local nontrivial product Cj,,, then D,,, is always SLAC-type (nonlocal).

2 If Dy, is local, then Cy,,, is nonlocal or trivial. New possibility supersymmetry application
with the strange momentum conservation law [B3] M.

3 If Dy, is SLAC-type (nonlocal), then Cy,,, is arbitrary.

In the case of the second possibility, we can construct an explicit supersymmetric action with
interactions.

For a finite flavor system versus the matrix representation in the infinite flavor system , we
make a table:

the number of Leibniz rule locality A-B separation
components
multi flavor Ny xN no-go local yes
multi flavor Ny xN no-go nonlocal yes
matrix N XN escape nonlocal no
representation | = Npagrix X Nmatrix by N infinity
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