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We perform Monte Carlo study of the 3dN = 6 superconformalU(N)×U(N) Chern-Simons

gauge theory (ABJM theory), which is conjectured to be dual to M-theory or type IIA superstring

theory on certain AdS backgrounds. Our approach is based on a localization method, which

reduces the problem to the simulation of a simple matrix model. This enables us to circumvent the

difficulties in the original theory such as the sign problem and the SUSY breaking on a lattice. The

new approach opens up the possibility of probing the quantum aspects of M-theory and testing the

AdS4/CFT3 duality at the quantum level. Here we calculate the free energy, and confirm theN3/2

scaling in the M-theory limit predicted from the gravity side. We also find that our results nicely

interpolate the analytical formulae proposed previously in the M-theory and type IIA regimes.‡
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1. Introduction

By now various regularization methods for supersymmetric gauge theories have been found,

such as the lattice regularization (see e.g., ref. [1]), Fourier mode regularization [2], the large-N

reduction [3, 4] and non-commutative geometry [5]. However, all these methods require a lot of

computational costs due to the existence of the dynamical fermions. In this article we introduce a

new simulation method for investigating a class of supersymmetric field theories via localization

method [6], which reduces the evaluation of certain observables to calculations in simple matrix

models. As a demonstration, we present numerical results [7] for the so-called ABJM theory [8],

which is the 3dN = 6 superconformalU(N)×U(N) Chern-Simons gauge theory.

2. Localization method for general 3dN = 2 supersymmetric field theory onS3

In this section we explain the basic idea of the localization method [6] and write down the par-

tition function of a general 3dN = 2 supersymmetric field theory onS3 in terms of a matrix model

[9]. The ABJM theory belongs to this class of theories. The localization method has been applied

[6] to 4d N = 4 super Yang-Mills theory, and some conjecture on the half-BPS Wilson loops1

[11] has been confirmed. Those readers who are interested in just understanding our numerical

results may skip this section.

Let us consider the partition function of a supersymmetric field theory,

Z =
∫

DΦ e−S[Φ], (2.1)

whereΦ represents the collection of the components fields. Let us suppose that the action is

invariant under an off-shell superchargeQ, namely2 QS[Φ] = 0. Then, the closure of the SUSY

algebra requiresQ2 = LB, whereLB is the generator of a bosonic symmetry the theory has. The

first step of the localization method is to consider the deformation by aQ-exact term as

Z(t) =
∫

DΦ e−S[Φ]−tQV[Φ], (2.2)

whereV is any fermionic functional satisfyingLBV[Φ] = 0. By taking the derivative with respect

to t, we obtain

dZ(t)
dt

=−
∫

DΦ (QV[Φ])e−S[Φ]−tQV[Φ] = −
∫

DΦ Q
(
V[Φ]e−S[Φ]−tQV[Φ]

)
=

∫
(QDΦ) V[Φ]e−S[Φ]−tQV[Φ]. (2.3)

If we assume theQ-invariance of the measure (QDΦ = 0), namely thatQ is non-anomalous, then

the deformed partition functionZ(t) should be independent of the parametert. This implies that

the original partition functionZ can be written as

Z = lim
t→+0

Z(t) = Z(t) = lim
t→∞

∫
DΦ e−S[Φ]−tQV[Φ]. (2.4)

1This formula is also reproduced by a numerical simulation in the large-N limit [ 10].
2Here we assume the absence of the boundary term.

2



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
2
3
3

Monte Carlo studies of 3dN = 6 SCFT via localization method Masazumi Honda

In this limit, the saddle point approximation around the classical solution toQV = 0 becomes exact.

Hence we obtain
Z = ∑

Φ0

exp(−S[Φ0])Z1−loop(Φ0), (2.5)

whereΦ0 is the ‘localized’ configuration determined by(QV)[Φ0] = 0. The summation∑Φ0
over

the saddle points should be understood as an integration if the saddle points are labeled by contin-

uous parameters. The one-loop determinantZ1−loop aroundΦ0 is given by

Z1−loop = lim
t→∞

∫
D(δΦ) e−tQV[Φ]

∣∣∣∣
Φ=Φ0+δΦ

. (2.6)

We can also use this method to calculateQ-invariant operators such as supersymmetric Wilson

loops [9].

Let us apply the localization method to a general 3dN = 2 supersymmetric gauge theory on

S3 which is a Yang-Mills Chern-Simons gauge theory with arbitrary gauge groupG=G1×·· ·×Gr

and Chern-Simons levels coupled to arbitrary number ofN = 2 chiral multiplets with arbitrary

representations and R-charge assignment3. The formula for the partition function is obtained as [9]

Z =
1
|W|

∫
drankG1σ (1)

(2π)rankG1
· · · drankGr σ (r)

(2π)rankGr

r

∏
a=1

∆Ga
Vec(σ

(a))∏
α

∆Rα
Mat(σ ;qα), (2.7)

where|W| is the order of the Weyl group ofG, andσ (a) is the Cartan part of the adjoint scalar

in the vectormultiplet with the gauge groupGa at the localization point.∆Ga
Vec(σ

(a)) represents the

contribution from the vector multiplet with the gauge groupGa given by4

∆Ga
Vec(σ

(a)) = ∏
α(a)∈∆+

[
2sinh

α(a) ·σ (a)

2

]2
·exp

[
ika

4π
σ (a) ·σ (a)

]
, (2.8)

whereα(a) labels the positive roots ofGa. ∆Rα
Mat(σ ;qα) is the contribution from the chiral multiplet

with the representationRα and R-chargeqα ( qα = 1/2 in the canonical assignment) :

∆Rα
Mat(σ ;qα) = ∏

ρα∈Rα

f
(

i − iqα − ρα ·σ
2π

)
, (2.9)

whereρα is the weight vector ofRα and f (z) is given by

f (z) = exp

[
−izlog(1−e2πz)− i

2

(
−πz2+

1
π

Li2(e
2πz)

)
+

iπ
12

]
. (2.10)

As a special case of a pair of chiral multiplets with the representationR andR̄ in the canonical

R-charge assignment, which corresponds to theN = 4 hypermultiplet, the formula (2.9) reduces

to the following simple form

∆R
Mat(σ ;1/2)∆R̄

Mat(σ ;1/2) = ∏
ρ∈R

1

2coshρ·σ
2

. (2.11)

3More generally, we can also include mass and FI terms [9].
4Note that this formula is independent of the Yang-Mills gauge coupling. This is because we can chooseQ·V[Φ] as

the action ofN = 2 super Yang-Mills theory itself. Then the deformation parametert is nothing but the gauge coupling.
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3. Numerical methods for the ABJM theory at arbitrary N and k

Now let us consider the ABJM theory, which is the 3dN = 6 superconformalU(N)×U(N)

Chern-Simons gauge theory [8]. The Chern-Simons levels (the analogue of the gauge coupling

constants) corresponding to two gauge groups are quantized to be integers,k and−k. This theory

is conjectured to be dual to M-theory onAdS4×S7/Zk for k ≪ N1/5, and to type IIA superstring

on AdS4×CP3 at k≪ N ≪ k5. The planar large-N limit is defined as the large-N limit with the ’t

Hooft coupling constantλ = N/k kept fixed.

The Monte Carlo study of the ABJM theory by usual lattice approach seems quite difficult for

the following three reasons. Firstly, the construction of the Chern-Simons term on the lattice is

not straightforward, although there is a proposal [12]. Secondly, the Chern-Simons term is purely

imaginary in the Euclidean formulation, which causes the sign problem in the importance sampling.

Thirdly, the lattice discretization necessarily breaks supersymmetry, and one needs to restore it in

the continuum limit by fine-tuning parameters5.

In order to circumvent these problems, we apply the Monte Carlo method to a matrix model

obtained via the localization. According to the general formula (2.7), the partition function of the

ABJM theory onS3 is given by

Z(N,k) =
1

(N!)2

∫
dNµ
(2π)N

dNν
(2π)N

∏i< j

[
2sinhµi−µ j

2

]2[
2sinhνi−ν j

2

]2

∏i, j

[
2coshµi−νi

2

]2 e
ik
4π ∑N

i=1(µ2
i −ν2

i ), (3.1)

which is commonly referred to as the ABJM matrix model. From the partition function, we define

the free energy as
F(N,k) = logZ(N,k) . (3.2)

Thus the ABJM free energy is given just by a 2N-dimensional integral. Note that the ABJM matrix

model describes the continuum theory without any regularization artifact.

The ABJM matrix model in the form (3.1) is not suitable for Monte Carlo simulation since the

integrand is not real positive. However, as we reviewed in Appendix B of [7] in detail (See also the

original work [14]), one can rewrite the ABJM matrix model as follows.

Z(N,k) =CN,k g(N,k) , CN,k =
1

(4πk)N N!
,

g(N,k) =
∫

dNx
∏i< j tanh2

(
xi−x j

2k

)
∏i 2cosh(xi/2)

≡
∫

dNx e−S(N,k;x1,··· ,xN). (3.3)

An important point here is that, in this form (3.3), the integrand is real positive, and we can perform

Monte Carlo simulation in a straightforward manner.

In order to calculate the partition function, we need to rewrite it in terms of expectation values

of some quantities, which are directly calculable by Markov-chain Monte Carlo methods. The

basic idea is to calculate the ratios of the partition functions for differentN as expectation values6.

Let us decomposeN into N = N1+N2 and consider the ratio

5This might be overcome by a non-lattice regularization of the ABJM theory [13] based on the large-N reduction

onS3 [4], which is shown to be useful in studying the planar limit of the 4dN = 4 super Yang-Mills theory [10].
6We can also calculate the ratios of the partition functions for differentk as expectation values [7].
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Figure 1: (Left) The free energy is plotted againstN3/2 for k = 1,2,4,6,8. The data points can be fitted
to straight lines, which impliesF ∼ N3/2 asN increases. (Right) The M-theory limit of the free energy
limN→∞ F/N3/2 is plotted against

√
k. Our data are in good agreement with the result (5.1) predicted from

the eleven-dimensional supergravity, which is represented by the solid line.

g(N,k)
g(N1,k)g(N2,k)

=
⟨

eS(N1,k;x1,··· ,xN1)+S(N2,k;xN1+1,··· ,xN)−S(N,k)
⟩

N1,N2

(3.4)

=

⟨
N1

∏
i=1

N

∏
J=N1+1

tanh2
(

xi −xJ

2k

)⟩
N1,N2

, (3.5)

where the symbol⟨· · · ⟩N1,N2 represents the expectation value with respect to the “action” given by

S(N1,k;x1, · · · ,xN1)+S(N2,k;xN1+1, · · · ,xN). In order to calculate the right-hand side of (3.5) with

good accuracy, it is necessary to takeN2 small enough to make sure that the observable in (3.5)

does not fluctuate violently during the simulation. In actual calculation we useN2 = 1. Then, by

calculating (3.5) for N1 = 1,2,3, · · · and by using theN = 1 resultg(1,k) = π, we can obtain the

free energy forN = 2,3,4, · · · successively with a fixed value ofk.

4. Results for the free energy

We present our numerical result [7] for the free energy of the ABJM theory. First we consider

the large-N limit with fixed k, which is conjectured to correspond to the eleven dimensional super-

gravity onAdS4×S7/Zk. In refs. [15, 16, 17], the free energy in the M-theory limit (N → ∞ with

k fixed) has been calculated by various analytic methods and confirmed the prediction

FSUGRA=−π
√

2k
3

N3/2 (4.1)

from the dual eleven-dimensional supergravity. Figure1 (Left) shows that the free energyF grows

in magnitude asN3/2 with N. ActuallyF/N3/2 behaves asF(N,k)/N3/2 = h0(k)+h1(k)/N, which

enables us to obtain the M-theory limith0(k) = limN→∞ F(N,k)/N3/2 reliably. In fig.1 (Right) we

plot h0(k) against
√

k, which confirms the prediction (4.1) from the eleven-dimensional supergrav-

ity for k= 1,2, · · · ,10 very precisely.

Let us next study the finite-N effects. An important analytical result on finiteN effects is that

the 1/N corrections around the planar limit are resummed in a closed form [18, 16]

5
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Figure 2: (Left) The free energy of the ABJM theory forN = 4 is plotted against 1/
√

λ . The solid line
represents the FHM result. The dotted line represent the perturbative resultsFweak=−N2 log 2N

πλ −N log2π+

2logG2(N+1) with the Barnes G-functionG2(x). (Right) The differenceF −FFHM is plotted againstN for
various values ofk. It reveals non-negligible discrepancies for eachk, which are almost independent ofN.

FFHM(N,λ ) = log

[
1√
2

(
4π2N

λ

)1/3

Ai

[(
πN2
√

2λ 2

)2/3(
λ − 1

24
− λ 2

3N2

)]]
, (4.2)

where Ai(x) is the Airy function and the type of correction O(e−2π
√

λ ) is neglected. In fig.2

(Left) we plot our results forN = 4 and compare them with the FHM result (4.2). We find that

our result agrees reasonably well with the FHM result in the strong coupling regime. To see more

precisely, we plot in fig.2 (Right) the difference between our result and the FHM result against

N for variousk. It turns out that there are discrepancies which are almost independent ofN.

This strongly suggests that the FHM result correctly incorporates the finiteN effects except for a

term which depends only onk. Note that this discrepancy cannot be explained by the worldsheet

instanton effect O(e−2π
√

λ ), which is neglected in FHM. See ref. [7] for a natural interpretation of

this discrepancy from topological string theory.

5. Summary and discussions

In this paper we have established a simple numerical method for studying the ABJM theory

on a three sphere for arbitrary rankN and arbitrary Chern-Simons levelk. The crucial point is that

we are able to rewrite the ABJM matrix model, which is obtained after applying the localization

technique, in such a way that the integrand becomes positive definite. By using this method, we

have confirmed from first principles that the free energy in the M-theory limit grows proportionally

to N3/2 as predicted from the eleven-dimensional supergravity. We have also found that the FHM

formula with the additional terms describes the free energy of the ABJM theory in the type IIA

superstring and M-theory regimes. While we have focused on the free energy as the most funda-

mental quantity in the ABJM theory, our method can be used to calculate the expectation values of

BPS operators. For instance, it is possible to calculate the expectation value of the circular Wilson

loop for various representations [19].
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We hope that the results of this work are convincing enough to show the power of the combi-

nation of the localization method and numerical simulation. We expect further numerical study of

various localized matrix models will reveal exciting new aspects of supersymmetric gauge theories

and quantum gravity.
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