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1. Introduction

In recent years, the I1=1 two-pion system has attracted a lot of attentiottioe|I®CD. The
increase in computational power has finally allowed to generate fully dyna@{B gauge con-
figurations at quark masses low enough for the rho resonance to bevetbspromising a better
understanding of complex hadron processes from first principleerRstudieq]1] 3] 3] 4] all use
the de facto standard method, which is to apply Lischer’s fornfilla [5] oxieision to moving
frames [§], in order to relate the finite-size energy spectrum to the infinitenephase shifts. The
main difficulty faced by this method is that one can only extract the phase ahdtfew energies
on the lattice, making it difficult to reconstruct the continuous energy rangehus the physical
parameters of the system, especially around the resonance.

An alternative method has been recently introduced for the study of theaminucleon sys-
tem [7] then successfully extended, in particular, to various baryoyshaystemq]8]. The method
relies on the fact that the phase shifts can be obtained from the asymptuididig of the Bethe-
Salpeter (BS) wave functions. An effective energy-independemtlocal potential can then be
introduced to account for the energy dependence of the BS wavédnscand as a result, the
energy dependence of the phase shifts.

This paper reports on our first attempt to apply this potential method to the I=hitwio
system. The meson masses considered here do not allow for the rho mdsoayothe goal being
to test the viability of the method in this channel before applying it to the studyeafetsonance.

2. BSwave function and potential

To describe two pions in the isosgia= 1 channel, we use the following operator

1 ~ + + ~
mmp) = — |1 m(—p)—T10 m(—p)|, 2.1
P) =75 [ (p)T" (—p) — " (p) 1T (—p)] (2.1)
wherert are local interpolating operators for the pions. The Bethe-SalpeterB®) function
in the center of mass frame is then defined in this channel as

3
Wn(r) = [ e OIm(p) ) 22)
with |n) an eigenstate of QCD with the required quantum numbers. The BS wau®fupresents
an asymptotic behaviouf][9] which allows to extract the scattering phadeasliiife energy of the
eigenstate, in exactly the same way as the wave function in quantum mechanics.

By inversion of the energy-dependence of the wave functifjns [#],cam define a non-local
energy-independent potentldlsuch that the wave function, satisfy, for all eigenstatds) with
energies below the inelastic threshold, the Schroedinger-like equation

(0% + K2)Wy(r) = mn/d3r’ U (r, r)Wa(r"). (2.3)

where the energy of the eigenstatgis E, = 2/ k2 4 m2.
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Since we only have access to a limited number of such BS wave functions ttttbe, we
can only obtain an approximation of the potential, such as a truncation of istia¥ expansion.
The velocity expansion of the non-local potential in this channel is

U(r,r') = No(r) +Vo(r)02 +...18(r" —r). (2.4)

From the approximate potential, we can obtain approximate BS wave functiaisemergies
below the inelastic threshold and extract phase shifts from them. Theaaganirthe results thus
depend on the convergence of the derivative expansion.

3. Wave functions on the lattice

3.1 Eigenstatesand correlation matrix

We note (t) a functional of the quark fields at timieand¢ its corresponding operator in the
Heisenberg picture. In the limit of an infinite lattice in the time direction, we have
(01(t) O2(to)) = 5 (0|61|n) (n| 2|0y =), (3.1)
n
where the brackets in the left-hand side denote the expectation value in laftize Q
Let {0} be a set oN linearly-independent operators akij = (n|&;|0) theN x N matrix of
their mixing with theN lowest eigenstates. Their correlation matéxs defined as

Gij(t,to) = (61(t) ] (to)) = MTD(t —to)M + O(e” Fnralt=)) (3.2)

whereD is diagonal with componenB(t —tg) = e Ent-to),

DiagonalizingG—1(t’,t9)G(t, to) for several(t,t’) pairs yields the energies, by fitting of the
eigenvalues with the forre=' -t and the inverse mixinyl ! as the eigenvector matrix (up to
a normalization of the columns). This requitesndt’ to be sufficiently separated froty so that
contributions from eigenstates higher tHah vanish in [3 ).

The determination of1~* and the energies allows to compute, for any operétand eigen-
staten < N, the matrix element

(0]6|n) = et _Zw('\/"l)i,nW(t)ﬁi(to» (3.3)

i<

and thus the BS wave functions as seen in the definifioh (2.2).

3.2 Source operators

The pion-pion 1=1 channel contains both pion-pion scattering states andhéhmeson. In
the pion mass region we investigata,(= 1.05 and 0.68 GeV), we expect the ground state to be
the rho meson, the first excited state to be the pion-pion scattering state withvts lwon-zero
momentum allowed on the lattice, and other eigenstates to have energies lauggh ¢m only
consider the first twoN = 2).

To approximate the pion-pion state we use the operaict rrri(p) with momentunp = ZT"eZ
(L being the spatial extent of the lattice) and for the rho meson the operator

6r=p= \2 3 [d00a- ) - dboa yax)] (3.4)

with a polarization taken parallel to that of the relative momentum of the paasss.
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Figure 1: Decomposition in Wick contractions of the correlation functionsesponding tatrr —
riirandp — 11T, appearing both in the correlation matrix (wghk= p) and the wave function. Time

goes upward.
(a) (b) (c)

Figure 2: Computation method for some contractions. Springs link pairs ofspetrich are pro-
jected one on the other by summing over stochastic noises. Open circlegpbcé summations.
Straight (resp. broken) arrows are direct (sequential) propagator

3.3 Correlation functions

The correlation matrix and the wave functions require the evaluation aflation functions
of the form of ), some of which are illustrated in Fﬁlg. 1. For the wavetions, the substitution
g < —q translates to parity conjugation, so we only need to compute the first pagsidgrams
are computed, followind]1], using adequate contractions of direct@maestial propagators using
stochastic noise; as sources

Q(x,t[a,ts, &) = ZD (X t;Y,ts) [€YE;(y)] (3.5)

WOt g ts.€) = 3 D7 06t:2.)[4°Q(z rla ts &) (3.6)

Fig.|2a shows an example. The propagators are contracted explicitely sinkh(upper part
in the diagram) and implicitely at the source (lower part) by noise projectiorFignfl appear
rectangle- and triangle-like diagrams. They can be computed in the sames\ilag arevious ex-
ample using sequential propagators, cf. [fi§. 2b. However, while the ntameran be introduced
freely at the explicit summation (empty circle), sequential propagatorsdefugte intermediate
momenta. This means that for the wave functions, which requires all posgillenomentay,
we need to compute as many sequential propagators. To remedy this, vaeiaetifor the wave
functions another stochastic noise at the sink, cf. Eg. 2c¢, which allowsaose the two momenta
at the sink independently of the computation of the propagators.
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Figure 3: Wave functions for the first (left) and second (right) diagraftise rirt — 7171 COrrelation
function in Fig.[1 (upper). Normalized such that the total wave functiorahasrm 1. Computed
att —tg = 12 on the sekyg = 0.1347.

4. Numerical setup

The preliminary results presented here were computed usingsthe2 + 1 full QCD gauge
configurations of ILDG/JLDG generated by the CP-PACS and JLQCD Bmiéions [ID] on a
28° x 56 lattice with a RG improved gauge actionft= 2.05 and aO(a) improved Wilson quark
action withcgy = 1.628. The lattice spacing = 0.0685 fm which makes for a lowest non-zero
momentum ofp = 27rr/L = 0.65 GeV. We compare our results on two sets of configurations with
light quark hopping parametekgy = 0.1347 andk,q = 0.1356, keepingcs = 0.1351 fixed.

The configurations withk,q = 0.1347 have meson masseg = 1.05 GeV andm, = 1.37
GeV. Those withk,q = 0.1356 have masses; = 0.68 GeV andm, = 1.10 GeV. In both cases,
the lowest energy of two free pions in the center of mass fram@%— (2m/L)2, is significantly
larger than that of the rho meson at rest.

The quark propagators are computed with temporal Dirichlet boundamjitmn We use
U (1) stochastic noises, 6 at the source and 20 at the sink. Wave functiopsopgeted in thel,”
representation of the cubic group. Statistical errors are computed usrjgdkknife technique
although 2-dimensional plots are shown without error bars for clarity.

5. Preliminary results

We have seen that the wave functiohs](2.2) on the eigenstates are olatsineshbinations
(B-3) of the wave functions computed with the interpolating source operatays) andp, them-
selves computed as sum of Wick contractions ("diagrams"). The combisati@nobtained by
diagonalization of the correlation matrix.

Figure[B shows the contribution of the two kind of diagrams appearing inthe> 1t wave
function. The left one, corresponding to the "parallel" diagram, is clogleetéree wave function.
The right one, corresponding to the rectangle diagram, exhibits a vakedeand short-ranged
behaviour. The triangle diagram, F[g. 1 (lower), has a wave functionsietilar (up to a normal-
ization) to that of the rectangle one. The rho meson being the ground setguaink-antiquark
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Figure 4: 1=1 pion-pion wave functions on the ground (left) and firgited (right) states. Nor-
malized to 1. Computed &t-tg = 10 on the sek,q = 0.1347.

pair propagating in the rectangle and triangle diagrams frioty can be thought as forming a rho
meson, which could explain why the two diagrams’ wave functions are simithslaort-ranged.

The ground state’s wave function, F[g. 4 (left), can be obtained usingrestsurce operator
by saturation at large enough time separation. Takimgp) as source operator, we see that the
dominant contribution as time separation increases is from the rectanglardiagr

The first excited state’s wave function is shown Hig. 4 (right). We seettigadominant
contribution is this time coming from the parallel diagram. The wave functionstaradd with a
linear combination of the two source operators, which has for effectaheatlation of the peaked
short-range contribution between the rectangle and triangle diagramsevidgwvhile the signal
from the ground state wave function is cancelled, the statistical noise reamaimgows agE ()
with AE the energy difference between the two lowest eigenstates.

An approximate potential is obtained by inverting the Schrédinger equétidpwh the BS
wave functions computed on the lattice as input. The wave functions iff]Figfoftumately do
not allow such a computation. The ground state wave function (left) is lshyaepked around the
origin, leading to huge discretization errors when taking finite-differérag@acian operator. The
first excited state wave function (right) is extremely noisy due to large gremgaration between
the two lowest eigenstates and the noise is further enhanced by takingailaeiba.

Using the fact that the main contribution to the first excited state wave functivarnisthe
parallel diagram and that the other diagrams should only contribute to tinerahge part of the
potential, we show in Fid]5 the effective central potential computed usihgtoe parallel dia-
grams, on both sets of hopping parameters. We see that a simple Yukawna §jbizd agreement
to the data even at surprisingly short range. The masses in the Yukaave fi63(9) GeV and
0.94(17) GeV, with corresponding rho masses 371 GeV and 110 GeV, respectively.

6. Summary and outlook

We have shown preliminary results of the application of the potential method telhmon-
pion system. The method, which has been successful in the study ofnblaaypon systems,
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Figure 5: Central potential using only parallel diagramsio = 12. Fit by a Yukawa potential.

encountered difficulties in this particular setup. First, the ground state tiendho meson, the
wave function is very short-ranged and the computation of the potential tedarge discretization
errors. Then, while the first excited state is a scattering state and likely telbdegcribed by a
potential, it is difficult to extract due to the large energy difference.

However, approaching the problem from a different perspectiegpitbsent results shed a new
light on the qualitative understanding of the system. Furthermore, the givolsems may be
solved in the region where the rho meson is a resonance and not thel gitaim, since the scat-
tering state will be simply extracted by saturation and the short-ranged cemipsimould become
less important. In this case, the potential method could lead to competitive queatiegiilts.
Further study at smaller pion masses will confirm or invalidate this expectation.

Numerical computations in this work were carried out on SR16000 at YITRyoto Uni-
versity. We are also grateful for the authors and maintainers of CPSH;+dflwhich a modified
version is used for measurement done in this work.
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