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1. Introduction

In order to precisely evaluate non-perturbative quastitielattice calculation, the reduction
in noise-to-signal ratio is one of the most important tagieeglly for nucleon electric dipole
moment [1, 2], the hadronic contribution to muon anomaloagmetic moment [3], nucleon form
factors and structure functions [4)] meson mass and mixing angle [5] and so on. We consider
the new strategy to effectively increase statistics wittgmnerating the new gauge configurations
using covariance in lattice symmetry.

Traditionally translational symmetry on the lattice hagib@ised as the covariant symmetry
of correlation function (correlator) with hadron interabhg operator. Since correlator in different
source positions with the same distance between each lpeshtors is exactly invariant in the
infinite statistical limit, the average of several sourcsipons can be regarded as several times
statistics if there is no correlation between them. In thise; however, the additional computation
of conjugate gradient (CG) to obtain quark propagator &b sacrce positions is needed. Consid-
ering the reduction of the above computational cost, lovdeaveraging (LMA) has an advantage
for low-(eigen)mode dominant observables as pseudosgalpagator [6, 7, 8, 9, 10, 11]. In order
to apply LMA to some kinds of correlator, another computadiocost to obtain many low-modes
to reach the dominance in each observables may be requitags ifftheall mode contribution
should be taken into account, LMA might less work than tiaddl source-shift method. In fact
[13, 12, 14] reported that the statistical error reductibnuleon propagator (or heavy mesons) in
LMA is less significant than pseudoscalar correlator.

Here we suggest the new class of variance reduction teamitpr nucleon correlator and
composite correlator [15]. Our idea is that it is not onlyeatid cover low-mode contribution as
well as LMA but alsoall modes which include the excluded modes from LMA (high-maoale)
taken into account without statistical bias. All-mode aggng (AMA) will be one of the powerful
technique to precisely evaluate the observables incluldighgly composite contribution coming
from low-mode and high-mode. In this proceedings we exglaimidea and show some numerical
results of two-point and three-point correlator in readitttice setup.

2. Covariant approximation averaging

The observable’ obtained in lattice calculation used in gauge enserfblgUy, - -- Uy, }
is represented as the statistical average;

1 Neonf _1/2
Z ﬁ[UI] + O(Nconf )7 (21)

0\ =
< > Nconfi

where the second term denotes the uncertainty due to finitdeuof available gauge configura-
tions in actual simulation. Under the transformatiorgaf G, whereG is symbolically defined as
a group of transformation in lattice symmetry and the elengetienotes one of the manipulation
in G for the link variablelJ — U9, the observable should be invariant

(0)=(09), (2.2)

in the infinite statisticNcons — .
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Here we introduce the approximati@r{2P¥ which fulfills the following condition:
Appx-1:
B INZNZE)
V{(QO)?)((ao@wr)2)
with AX = X — (X). r is regarded as correlation betwe€rand ¢(aPP%
Appx-2: The computational cost @(@P% is much smaller than originaf.
Appx-3: (@) — (5(aPPN )
Using ¢@P% we construct improved estimator;

omp) _ glresy | ﬁc(;app&’ olest — g _ g(appy ﬁ((;apPX) _ Nél zﬁ(appﬁ 9 (2.4)

~1, ((A0)) = (A0, (2.3)

which is also satisfied wittio(MP)) = (&) (Appx-3). For the above estimator the first and the
second conditions are to reduce the computational costeat N5, and the third one is to avoid
the statistical bias. When we perfofig times measurement @f(@°P¥ after transformatiom, for
instance, by shifting source locations, the statisticadreof improved estimator)jmp, will be

reduced to
Dimp) = By/2(1—1) +Ng*, (2.5)

compared with original erroA ignoring the correlation between differedit@PX9. In the case
of r ~ 1 (Appx-1), A(imp) becomes nearliNg 12 times smaller thad. Since the computational

cost Cost¢2PP) is cheaper thahlg x Cost(@) from Appx-2, total cost of&/(MP) is significantly
reduced. The above estimator is defined@griant approximation averaging (CAA).

LMA is one of the class of CAAY(@P consists of low-mode, angd is a shift of source
location under translational symmetry. In LM&@PPX¥ is correlator constructed by the inverse of
Hermitian Dirac operato®(x,y) = H~1(x,y) ( or the even-odd preconditioned counterpart), where
we only present formula for the point source case for sintglic

OW l ow
S (x,y) = zA L) (v), ﬁéLM“:N—G%ms“ )9), (2.6)

with eigenmodey and eigenvalue\k in H(X,y)yk(y) = Akk(X). Appx-3 is by definition and
Appx-2 is fulfilled when ignoring the 1/O time of stored eigenmodedisk storage or memory
and time of vector-multiplication to construét(si'o"")). Both conditions are (mostly) independent
from observables, however the validity Appx-1 depends on magnitude b, (from the practical
point of viewN, usually need©(100)).

We propose the new class of CAA Al-mode averaging (AMA) [15]. Using the sloppy CG
combined with low-mode deflation [10] in which the stoppirandition € of CG is made loose as
gama < 1073-1074 (or restrict a few CG iteration numbet)the approximation is given by

1
S (xy) = ZA UOO) + T (HY)OA —dw), o™ = > o(8™9), @7

1with the fixed the stopping condition of CG in the specificatizf the approximationS@). There could be a
small, but finite, probability that a bias will be introducdde to the finite precision (64 bits arithmetic in our case)
breaking Appx-3. This bias could be avoided by fixing theaten number to a constant as pointed out by M.LUscher
and S. Hashimoto independently. In this proceedifigl00) configurations were checked that this bias is negligible
wheneaya = 3 103.



Error reduction technique using covariant approximation and application to nucleon form factor
Eigo Shintani

Table 1. Parametersin LMA/AMA. We represent the maximum and minimiange of CG iteration in each
ensembles.

m Neoni N N, € CG iter. EAMA CG iter.(AMA)
0.005 380 32 400 1 350-360 3<10°° 70-90
0.01 257 32 180 1 600-630 3x10°3 90-130

where f; denotes the polynomial function éf created by sequence of CG process. AMA has
advantage thag@" (x,y) takes account of not only low-mode contribution but alsg(agimately)
all-mode contribution which is controlled by the two pardaeneN, andeava. AMA also fulfills

the above three conditioné ppx-1-Appx-3) for a much wider class of observables than LMA.

3. Numerical results

We use théN; = 2+ 1 domain-wall fermion (DWF) configurations generated by RBIKQCD
collaboration in 23x 64 lattice atB = 2.13 lwasaki gauge action [16]. In this configurations 5th
dimension size ids = 16. We curry out CG algorithm with even-odd preconditionaigguark
massm = 0.01,0.005. In the calculation of the exact eigenmode of Hermitiaaneodd kernel
of DWF operator we implement the implicitly restarted Langalgorithm with Chebychev poly-
nomial acceleration [17]. Note that in use of even-odd baszshould take care of shift size of
source point to avoid the unexpected bias into LMA/AMA estior. Since there might not be
(trivial) equivalence between even and odd DWF kernel, gafer to use even (or odd) step of
source shift manipulatiog in Eq.(2.6) and (2.7) for even (or odd) DWF kernel.

In this proceedings LMA/AMA estimator is obtained Mg = 32 different source locations
separated by every 12 for spatial direction and 16 for tealpdirection; (0,0,0,0), (12,0,0,0),
(12,12,0,0),--,(12,12,12,48) in the lattice unit. (0,0,0,0) is an origisaurce location. Stop-
ping conditione for original observable’ and sloppy CCGeama for AMA are defined ag|Hx —
bl|/||b|]| < &,eama With even-site source vectdrand even-site solution vectar Table 1 repre-
sents the each parameters. Note that the number of CGateiatin the case of deflated CG with
N, low-mode projection. To compare the performance, we seGngssian-type smearing source
parameter quoted in [4]. Reference [4] has made use ofitvaditmethod in which statistics is
increased by taking average ovgrat 4 different source locations to precisely evaluate theeamun
isovector form factor (and axial-vector form factor, howewe do not estimate that), and thus four
times ofNonf are regarded as their total statistics (In addition [4] lirs\é the results ah= 0.005
with double source method which increases further two tistasistics if ignoring the correlation
from other source points in temporal direction. Furthemnsource used in [4] is non-relativistic
one and thus its computational cost reduces to the half.).

3.1 Two-point function

In Figure 1 we compare the three different time-slices farleon (N), pseudoscala) and
vector /) meson correlator between original and LMA/AMA analysis rentioned before LMA
takes account of statistical fluctuation of lowmode disitiiin of Dirac matrix in Eq.(2.6), and thus
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Figure 1. The comparison between LMA/AMA and original analysis forcleon (N), pseudoscalar (P)
and vector (V) meson propagator at different time-slices4,8,12. The colored bar indicates the ratio of
relative error between original and LMA/AMA. This is the eaatm = 0.005.

Table 2: The nucleon mass obtained by global fitting of N correlatdhv@aussian smeared sink. We use
GeV unit. Computational costs of LMA/AMA and previous study are estimated in the unit of original
computation of CG iteration (Org) with deflation. Note thait €Cost(TY) we naively scale assuming that we
carry out the same implementation as [4] with deflation in&7224) measurement im = 0.005(0.01).
Bracket in Cost(TY) is an estimate with double source metHaakt column is a gain for AMA which is
ratio of scaled Cost(TY) to achive AMA accuracy with Cost(A)M

My my (Orig) mn(LMA) - my(AMA)  Cost(AMA) mn(TY) Cost(TY) Gain
0.33 1.1242(223) 1.1451(87) 1.1390(38) 8.2 1.1481(100)8[4®] 8.3
0.42 1.2207(171) 1.2192(111) 1.2334(42) 6.7 1.2169(93) 5 5. 4.0

it turns out that the error reduction of LMA may be significémtlong distance. On the other hand,
since AMA approximately includes the all mode contributlmnusing the sloppy CG, AMA will
work well for both short and long distance effects. The absteéement is clearly seen in Figure
1, Fromt =4 tot = 12, the (relative) error reduction is drastically changed-MA, however
for AMA such reduction keeps close to ideal reduction ra;@;lé(z ~ (0.18, for every channels.
Note thatP channel seems to show a similar error reduction between LMMEVIA because this
channel mostly dominates the lowmode contribution as drgdea [6, 7, 8].

In Figure 2 we observe that the effective mass of nucleon inrAAdMcomes more stable for
both point and Gaussian smeared sink rather than LMA. Inefable see that the precision of
nucleon mass in AMA is higher than previous study [4] while tomputational cost is roughly less
by 1/4 times. The detailed comparison between them inaudomputational time of lowmode is
discussed in [15].
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Figure 2: Effective mass plot of nucleon correlator in original, LMMMA analysis with point sink and
Gaussian smeared sink. The colored bound shows the s@tistior when globally fitting the propagator.

3.2 Nucleon isovector form factor

In order to check LMA/AMA in more complicated observables try to compare the three-
point function in AMA and traditional method. Nucleon isater form factor is appropriate to
investigate the working of AMA because such signal is veeacknd it is given by a complicated
ratio of quark propagator;

Cy@t [cNh—t,gcC
CY(t1 —t,0) [CN(t1 —t,0)C,

(t—to,0)CN(ty —t5,0) ]2
(t—1to,0)Cl' (t1 — to,0)

with two-point function of nucleon of local (L) or Gaussia@)(sink, Cl’_\{G(t,Q) at three dimen-
sional momentundj, three-point functiorCB\:l(q,t) with currentJy, andK = /2(En +mn)/En.
Following [4] we evaluate the isovector form factor extemtfrom Eq.(3.1) as shown in Figure
3. Precision ofF;2(q?) in AMA are more accurate than the previous results [4] at eeafsfer
momentag?. This consistency indicates that AMA will be effective irdtesing errors for many
lattice observables on the lattice.

(3.1)

Ru(t17t7t0| P1, pO) =K

OZzOz

4. Summary

In this proceedings we show several results of the new clasgrar reduction techniques in
covariant approximation averaging (CAA). We suggest adatraveraging (AMA) in which all
mode contribution is taken into account by using sloppy C@ weflation as the improved estima-
tor instead of lowmode in low-mode averaging (LMA). AMA is@icable to broad observables
including nucleon spectrum, three-point function and otmenposite correlator rather than LMA.
We compare the nucleon mass and isovector form factor witliste lattice size (5 fm®) and
light quark massr(; ~ 0.3-0.4 GeV) inNs = 2+ 1 DWF configurations, and show the significant
reduction of computational cost to obtain similar precisiath traditional one. Calculations of the
nucleon electric dipole moment and the hadronic contriiouto the muon g-2 are underway.

Numerical calculations were performed using the RICC atENkand the Ds cluster at FNAL.
This work was supported by the Japanese Ministry of EducaBcant-in-Aid, Nos. 22540301
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Figure 3: Isovector form factoF; (g?) andF»(g?) obtained in LMA/AMA and presented in TY et al.[4] at
m=0.005.
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