PROCEEDINGS

oF SCIENCE

Finite volume corrections to LECs in Wilson and
staggered ChPT

Fabrizio Pucci*
Fakultat fur Physik, Universitat Bielefeld, D-33615 Bikellel, Germany
E-mail: pucci @hysi k. uni - bi el ef el d. de

Gernot Akemann
Fakultat fur Physik, Universitat Bielefeld, D-33615 Bikellel, Germany
E-mail: akenmann@hysi k. uni - bi el ef el d. de

We study the simultaneous effect of finite volume and finitdda spacing corrections in the
framework of chiral perturbation theory (ChPT) in the epsitegime, for both the Wilson and
staggered formulations. In particular the finite volumereotions to the low energy constants
(LECs) in Wilson and staggered ChPT are computed to neldading order (NLO) in the
e—expansion. For Wilson witN¢ =2 flavours and staggered with genéXiicthe partition function
at NLO can be rewritten as the LO partition function with remalized effective LECs.

The 30th International Symposium on Lattice Field Theory
June 24 - 29, 2012
Cairns, Australia

“Speaker.

(© Copyright owned by the author(s) under the terms of the @e&ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/



Finite volume corrections to LECs in Wilson and staggere®Th Fabrizio Pucci

1. Introduction

In the last years the lattice QCD simulations near the chimat drive renewed interest to under-
stand this limit with analytical approaches, and indeed afl@fforts have been done in the study
of the low energy effective theories. It is important in themerical simulation to have the lattice
spacing effects under control that also break explicitlyatlsymmetry. Wilson and staggered chi-
ral perturbation theory (WChPT and SChPT) provide the fraotk in which one can study these
UV cut-off effects.

In the Wilson and staggered ChPT lagrangians in additiorhéocontinuum Gasser-Leutwyler
terms [1, 2] there are additiona3(a?) contributions, and hence new low energy effective con-
stants (LECs) that need to be introduced. More in detaildading order (LO) WChPT with two
flavors only one new LEC enters, usually denoted withi3, 4], while for SChPT six new LECs
Ci need to be introduced [5, 6].

Here we study these theories in a finite volume in the sodalegime [7, 8], namely when the
pion Compton wave length is bigger then the lattice &ize

Ml < 1. (1.1)

This regime is extremely intriguing since systematic atiedy calculations are possible. In partic-
ular it has been shown that for both formulations [9, 10, 11]J@&in the e-expansion these theories
are equivalent respectively to Wilson chiral Random Mairbeory (WChRMT) for the Wilson
formulation and to staggered Chiral RMT for the staggeregl on

In these chiral theories one has also to understand théveetite between the quark massand
the lattice spacin@. For example in WChPT there are three possible power caysfiti2, 13]
that are usually applied depending on the appearance ofithaffeeffect at the LO, the so-called
Aoki-regime, at Next-to-Leading order (NLO) called GSkegime, or Next-to-Next-to-Leading
order (NNLO) called GSM regime in which NLO corrections te tpectral density of the Wilson
Dirac operator have already been computed [14]. Througsetpeoceedings we analyze WChPT
and SChPT using the first power counting scheme, namely when

m~ a*Adcp ~ O(e?) . (1.2)

It is usually known also as large cut-off effect regime siaté.O both the mass and the cut-off
terms contribute with the same strength to the chiral symnieeaking.

In particular we address the problem of the extension uP(te?) of the partition function for
WChPT withN¢=2 flavors and for SChPT for genetit. The main result that we present here and
in a forthcoming publication is the possibility to write thieO partition function for both theories
as the LO one with renormalized LECs. This is analogous tat\Wwhppens in continuum chiral
perturbation theory [15, 16, 17] with the only differencatthere the renormalization factor of the
LECs can not be written in terms of the geometric data of thtecéaalone. This result opens up
the possibility to extend the relations WChPT/WChRMT anchBT/SChRMT up to NLO.
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2. Wilson Chiral Perturbation Theory for Ny =2

The Wilson chiral lagrangian for the two-flavor case with elegrate mass can be written as

2
Lo="Tria,ua,u" - T MU UMM e (TrU UYL @)

As usual is the chiral condensatg, is the pion decay constant aoglis the new LEC of WChPT.
The main idea underlying the construction of the theory @€tlhegime is that, since the zero modes
dominate the path integral, one has to threat them non+patively, in contrast to the propagating
guantum fluctuations. Thus the usual parameterizatiorh®mntatrixU is given by

U(x) =Ug exp[i\/?E E(x)] , (2.2)

whereUy is the two by two unitary matrix describing the zero-moded &rare the fluctuations.
Since also the NLO lagrangian needs to be considered in #sept calculation, following [18, 19]
we write it as

Lnio = agTr[d,UduT] Tr[U+U" +ame (Tr[U+U'])?
+aldy Tr[U+UT+a%dy (Tr[u+U™)?, (2.3)
where 4 new LECs are introduced, namejycs, d; andd,. The idea is to expand the action
S— / d* (Lio + Lnvo) (2.4)
up toO(&?) using the Aoki regime power counting
Veedtmaetdne E(X)~e an e (2.5)

At LO the different contributions can be rearranged as

SO

%/d‘txw (0,8 (X)3E (¥)] —%mVZTr [Uo+ug] +aVe, (Tr [U0+UOTD2 (2.6)
=s)+9)- 2.7)

Now the trick is to rewrite the partition function by sepamgtthe integration over the zero-modes
from the integration over the Gaussian fluctuations as

_ S ,SSO(:
2= [, U0 S /S UD€ 0 Ze(U0) 2.8)
with §
Z¢(Uo) = 108 (0] 9(£ () €%~ (2.9

The factorJ(&(x)) is the Jacobian arising from the change of integration fséeg@ At this point
we can expand the functiaty (Ug) up to O(&?) and then perform all the Gaussian integrals using
the expression

Jigeien[-52] £00uEm = (Sdk g did ) oy (210
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in terms of the propagatdx(x —y). We easily find that

Ze(Up) = N {1+ <— %A(O) - a3d1V> Tr [Uo+ug}

4a2 cV
EF2

A(0) — amc8v> (Tr [uo+ug]>2_ oV (Tr [U0+UJD3} (2.11)

whereN is an overall normalization. In dimensional regularizatihe propagatof(0) is finite
and can be written as 8
1

W
with 31 a numerical coefficient that encodes the geometrical datzedattice.
Now with some algebraic manipulations, using the propexifetheSU(2) group and the relation

A(0) = — (2.12)

3 . m 2 3 R
<5 n 16a2c2> (Tr [Uo+ug} )t Z<(T|r [U0+UOTD ) — a202<(Tr [UO+UJD ) —4=0
(2.13)
it is immediate to see that re-exponentiating all the terfrth® previous expansion, the partition

function is equal to the LO one if we use instead@ndc,, the renormalized low energy constants
e andcS'" defined as

3 d
seff —s(1- =7 242 _32 2.14
( 2280 - m\/\7( &l + 328, s (2.14)
and 4 7 d 1
eff m ( C3 2
Sl'=c (1 FZA(0)> +5 <z + 4CZ> N (2.15)
Here we have defined
m=mzV and & = a?V (2.16)

which are of order 1. Thus the NLO partition function reads as

effV

ZNLO = N// dHerXp[m
SuU(2)

N’ eff gt
= 2o ). (2.17)

Tr[uo-+Ug] - SV (Tr o+ u] )|

Since effective LECs given above at NLO depend in a non trivay on the additional LECs and
not only on the geometrical data of the lattice, in princifilés possible to use a finite volume
scaling analysis to extract the numerical value of thesetamchined NLO LECs. Performing the
simulations at two different lattice volumé& andV, with geometrie3; and3,, WChPT predicts
a scaling of the LECs as

>eff(vp) 3 (BivNVa— B Vi) 3ad, 1 1

>eff(Vy) =1+ 2F2 NYAY + <mc22> <\71 B \72> ’ (2.18)
eff

¢ (V1) 4 (BrvV2—PovV1)

VR = YA VA (249
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3. Staggered Chiral Perturbation Theory

The staggered chiral lagrangian has been introduced imid]@] respectively for the one-flavor
theory and for the generdl; case and reads as

2
Lio = %Tr(duUd,lUT) —%Tr(MTU +UM) —aCiTr (Ul ') —aCs S Tr (U yul Ty

v

Z [Tr (U yu5U yu5) + hC]

8 C
~a'5 3 [Tr(UyU) +he] -2 3

—aZCTZV > [Tr(Uyu) Tr (Uw) +hee] —aZCTZA > [Tr (Uys) Tr (Uyps) + hc ]
—aZCTSV % [Tr (Uy) Tr (U'y)] —az% % [Tr(Uyus) Tr (UTys)] - 3.1)

The AN¢ x 4N¢ unitary matrixU is parameterized as

u KT oL
m d KO ..

U=|k-Ko s

with u, 7, K ... being 4x 4 matrices that take into account the four taste degreesedém (see
[6] for details). Indeed in the staggered formulations algirstaggered Dirac matrix yields four
quark tastes due to the doubling problem. These states gemelate in the continuum but split
at non-zero lattice spacing, and as consequence of thikibgeaew terms and new LECs usually
denoted a€1,Coa,Cov,C3,C4,Csa,Csyv,Cg are introduced in the chiral lagrangian.

In the Aoki regime the lagrangian (3.1) describes the LO otad theory. If we want to go beyond
we have to consider also the NLO terms that potentially driza the discretization. However, in
contrast to the Wilson theory here the first correction appaly at NNLO, making the computa-
tion easily respect to the Wilson case. Thus if we want toystbd finite volume correction to the
LECsC; we will have only to expand the LO lagrangian up to @g?) order.

In order to begin we rewrite the partition function as

0)
zZ= [duU ()] e S = / DuUo e Z¢ (Uo) (3.2)
SU(4Nr) SU(4Nr)

where as in the previous section we have separated theatitggiover the zero-modéd, from
the integration over the fluctuatiods Now we can expand the functidi (Uo) up to orderO(&?),
perform the Gaussian integrals over the fluctuations anthfiatier re-exponentiating all the terms
we can absorbs th®(£2) corrections in the renormalized LECs. At the end we can write

N/
Znio = WZLO (Zeff,Cieff) (3.3)

where the value of th&®'f andC®'" are given in the following table.
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£ 16N2—1 eff 8N
seff =5 <1— ﬁA(O}) cfog (1— F—;A(O))
ff Cay (16N?—2)+4C3N¢ ff Coa(16N7—2)+4C4N¢
s :szfWA(O) Coa :CZAfWA(O)

C3(16N7—2)+2Cpy Ny C4(16N7—2)+2CoaN¢

c'=c rr MO | G =G T A)
calf = Cay (1- 24 0)) e =Con (1- FA0)
=G (1— SFl;A(O))

Table 1. The renormalized SChPT LECs.

From a tree level expansion of the NLO chiral lagrangian we resds the NLO masses of the
non-neutral mesoAsomposed of quark andc

P = pa(My + me) + aAR-C. (3.4)

Here the taste splitting&"g'aLO depend obviously by the taste state identified by the tastexré.
All the states fall into 5 different classes : the Pseud@sod@S), Axial-Vector (AV), Tensor (T),
Vector (V) and Singlet (S) sector. In such channels the tggligting [6] can be written at NLO
when inserting our results from table 1.:

ANEC =0 (3.5)

ANLO — g (C1+3C3 +Cy+3C5) — g <8Nf (Ca acq) 1 (ST I AON? —22'\)|f+2[3C2v CaalNs ) A(0) (3.6)
ANLO #23 (2C5 + 2C4 + 4Cq) g <32NfC6+ [Ca+C4](16N?—§)f+2[C2v +CaaN¢ ) AQ) a7

ANLO _ ;ij (C1+Cs +3Ca+3Cg) — ;ij <8Nf (Ca g 1 (et CelAoN? —22|\)|f+2[C2v 32Ny ) A(0) (38)
ANLO _ i_g (4C5 +4C4) % ([C3+C4](16Nf2 *li)f+2[czv +CoaNs ) AQ). 3.9)

4. Summary and Discussion

Throughout this paper we have shown that inghregime for two-flavor Wilson chiral perturbation
theory and for generadils staggered ChPT the NLO order partition function can be emits the
LO one with renormalized effective LECs.

This result leads to several consequences that we will @kppon in a forthcoming publication.

IFor flavor neutral mesons the situation is more complicatetiaiher terms have to be introduced in the chiral
lagrangian.



Finite volume corrections to LECs in Wilson and staggere®Th Fabrizio Pucci

The first regards the possibility to extend the relationsvben LO WChPT and SChPT with Chiral
Random Matrix Theory in its Wilson and staggered versiop&esvely.

The second consequence is that in WChPT, due to the fachtfibite volume corrections change
the mean field potential, this effect changes the phase lani@scof the theory.

A further point is the extension of our result to Wilson ChPitmgeneralN;. In that case the
situation is more involved since 3 LO and 9 NLO LECs have tortioduced and naturally the
chiral lagrangian becomes more involved, including thestjar of possible constraints on the
signs of individual LECs and combinations of these.
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