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1. Introduction

In the last years the lattice QCD simulations near the chirallimit drive renewed interest to under-
stand this limit with analytical approaches, and indeed a lot of efforts have been done in the study
of the low energy effective theories. It is important in the numerical simulation to have the lattice
spacing effects under control that also break explicitly chiral symmetry. Wilson and staggered chi-
ral perturbation theory (WChPT and SChPT) provide the framework in which one can study these
UV cut-off effects.
In the Wilson and staggered ChPT lagrangians in addition to the continuum Gasser-Leutwyler
terms [1, 2] there are additionalsO(a2) contributions, and hence new low energy effective con-
stants (LECs) that need to be introduced. More in detail for leading order (LO) WChPT with two
flavors only one new LEC enters, usually denoted withc2 [3, 4], while for SChPT six new LECs
Ci need to be introduced [5, 6].
Here we study these theories in a finite volume in the so-called ε-regime [7, 8], namely when the
pion Compton wave length is bigger then the lattice sizeL

mπL ≪ 1. (1.1)

This regime is extremely intriguing since systematic analytical calculations are possible. In partic-
ular it has been shown that for both formulations [9, 10, 11] at LO in theε-expansion these theories
are equivalent respectively to Wilson chiral Random MatrixTheory (WChRMT) for the Wilson
formulation and to staggered Chiral RMT for the staggered one.
In these chiral theories one has also to understand the relative size between the quark massm and
the lattice spacinga. For example in WChPT there are three possible power countings [12, 13]
that are usually applied depending on the appearance of the cut-off effect at the LO, the so-called
Aoki-regime, at Next-to-Leading order (NLO) called GSM∗ regime, or Next-to-Next-to-Leading
order (NNLO) called GSM regime in which NLO corrections to the spectral density of the Wilson
Dirac operator have already been computed [14]. Through these proceedings we analyze WChPT
and SChPT using the first power counting scheme, namely when

m∼ a2Λ3
QCD ∼ O(ε4) . (1.2)

It is usually known also as large cut-off effect regime sinceat LO both the mass and the cut-off
terms contribute with the same strength to the chiral symmetry breaking.
In particular we address the problem of the extension up toO(ε2) of the partition function for
WChPT withNf =2 flavors and for SChPT for genericNf . The main result that we present here and
in a forthcoming publication is the possibility to write theNLO partition function for both theories
as the LO one with renormalized LECs. This is analogous to what happens in continuum chiral
perturbation theory [15, 16, 17] with the only difference that here the renormalization factor of the
LECs can not be written in terms of the geometric data of the lattice alone. This result opens up
the possibility to extend the relations WChPT/WChRMT and SChPT/SChRMT up to NLO.
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2. Wilson Chiral Perturbation Theory for Nf = 2

The Wilson chiral lagrangian for the two-flavor case with degenerate massmcan be written as

LLO =
F2

4
Tr
[

∂µU∂µU†]− Σ
2

Tr
[

M†U +U†M
]

+a2c2
(

Tr
[

U +U†])2
. (2.1)

As usualΣ is the chiral condensate,F is the pion decay constant andc2 is the new LEC of WChPT.
The main idea underlying the construction of the theory in theε-regime is that, since the zero modes
dominate the path integral, one has to threat them non-perturbatively, in contrast to the propagating
quantum fluctuations. Thus the usual parameterization for the matrixU is given by

U(x) = U0 exp

[

i

√
2

F
ξ (x)

]

, (2.2)

whereU0 is the two by two unitary matrix describing the zero-modes and ξ are the fluctuations.
Since also the NLO lagrangian needs to be considered in the present calculation, following [18, 19]
we write it as

LNLO = ac0 Tr
[

∂µU ∂µU†]Tr
[

U +U†]+amc3
(

Tr
[

U +U†])2

+a3d1 Tr
[

U +U†]+a3d2
(

Tr
[

U +U†])3
, (2.3)

where 4 new LECs are introduced, namelyc0,c3,d1 andd2. The idea is to expand the action

S=

∫

d4x (LLO +LNLO) (2.4)

up toO(ε2) using the Aoki regime power counting

V ∼ ε−4
, m∼ ε4

, ∂ ∼ ε , ξ (x) ∼ ε , a∼ ε2
. (2.5)

At LO the different contributions can be rearranged as

S(0) =
1
2

∫

d4xTr
[

∂µξ (x)∂µξ (x)
]

− 1
2

mVΣTr
[

U0+U†
0

]

+a2Vc2

(

Tr
[

U0+U†
0

])2
(2.6)

≡ S(0)

∂ 2 +S(0)
U0

. (2.7)

Now the trick is to rewrite the partition function by separating the integration over the zero-modes
from the integration over the Gaussian fluctuations as

Z =

∫

SU(2)
[dHU(x)]e−S =

∫

SU(2)
dHU0 e−S(0)

U0 Zξ (U0) (2.8)

with
Zξ (U0) =

∫

[dξ (x)]J(ξ (x))eS(0)
U0

−S
. (2.9)

The factorJ(ξ (x)) is the Jacobian arising from the change of integration variables. At this point
we can expand the functionZξ (U0) up toO(ε2) and then perform all the Gaussian integrals using
the expression

∫

[dξ (x)]exp
[

−S(0)

∂ 2

]

ξ (x)i j ξ (y)kl =

(

δil δ jk −
1

Nf
δi j δkl

)

∆(x−y) (2.10)
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in terms of the propagator∆(x−y). We easily find that

Zξ (U0) = N

{

1+

(

− 3mVΣ
4F2 ∆(0)−a3d1V

)

Tr
[

U0 +U†
0

]

+

(

4a2c2V
F2 ∆(0)−amc3V

)

(

Tr
[

U0 +U†
0

])2
−a3d2V

(

Tr
[

U0+U†
0

])3
}

(2.11)

whereN is an overall normalization. In dimensional regularization the propagator∆(0) is finite
and can be written as

∆(0) = − β1√
V

(2.12)

with β1 a numerical coefficient that encodes the geometrical data ofthe lattice.
Now with some algebraic manipulations, using the properties of theSU(2) group and the relation

(

3
2

+16â2c2

)

〈Tr
[

U0 +U†
0

]

〉+ m̂
4
〈
(

Tr
[

U0+U†
0

])2
〉− â2c2〈

(

Tr
[

U0 +U†
0

])3
〉−4m̂= 0

(2.13)
it is immediate to see that re-exponentiating all the terms of the previous expansion, the partition
function is equal to the LO one if we use instead ofΣ andc2, the renormalized low energy constants
Σe f f andce f f

2 defined as

Σe f f = Σ
(

1− 3
2F2∆(0)− â

m̂
√

V

(

2â2d1 +32â2d2−3
d2

c2

))

(2.14)

and

ce f f
2 = c2

(

1− 4
F2 ∆(0)

)

+
m̂
â

(

c3

Σ
+

d2

4c2

)

1√
V

. (2.15)

Here we have defined
m̂≡ mΣV and â2 ≡ a2V (2.16)

which are of order 1. Thus the NLO partition function reads as

ZNLO = N′
∫

SU(2)
dHU0exp

[

mΣe f fV
2

Tr
[

U0 +U†
0

]

−a2ce f f
2 V

(

Tr
[

U0 +U†
0

])2
]

=
N′

N
ZLO(Σe f f

,ce f f
2 ). (2.17)

Since effective LECs given above at NLO depend in a non trivial way on the additional LECs and
not only on the geometrical data of the lattice, in principleit is possible to use a finite volume
scaling analysis to extract the numerical value of these undetermined NLO LECs. Performing the
simulations at two different lattice volumeV1 andV2 with geometriesβ1 andβ2, WChPT predicts
a scaling of the LECs as

Σe f f(V1)

Σe f f(V2)
= 1+

3
2F2

(β1
√

V2−β2
√

V1)√
V1V2

+

(

3ad2

mc2Σ

)(

1
V1

− 1
V2

)

, (2.18)

ce f f
2 (V1)

ce f f
2 (V2)

= 1+
4

F2

(β1
√

V2−β2
√

V1)√
V1V2

. (2.19)
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3. Staggered Chiral Perturbation Theory

The staggered chiral lagrangian has been introduced in [5] and [6] respectively for the one-flavor
theory and for the generalNf case and reads as

LLO =
F2

8
Tr
(

∂µU∂µU†)− Σ
4

Tr
(

M†U +U†M
)

−a2C1Tr
(

Uγ5U
†γ5
)

−a2C6 ∑
µ<ν

Tr
(

UγµνU†γµν
)

−a2C3

2 ∑
µ

[

Tr
(

UγµUγµ
)

+h.c.
]

−a2C4

2 ∑
µ

[

Tr
(

Uγµ5Uγµ5
)

+h.c.
]

−a2C2V

4 ∑
µ

[

Tr
(

Uγµ
)

Tr
(

Uγµ
)

+h.c.
]

−a2C2A

4 ∑
µ

[

Tr
(

Uγµ5
)

Tr
(

Uγµ5
)

+h.c.
]

−a2C5V

4 ∑
µ

[

Tr
(

Uγµ
)

Tr
(

U†γµ
)]

−a2C5A

4 ∑
µ

[

Tr
(

Uγµ5
)

Tr
(

U†γµ5
)]

. (3.1)

The 4Nf ×4Nf unitary matrixU is parameterized as

U =













u π+ K+ ...

π− d K0 ...

K− K̄0 s ...

... ... ...
. . .













with u, π+, K+ ... being 4×4 matrices that take into account the four taste degrees of freedom (see
[6] for details). Indeed in the staggered formulations a single staggered Dirac matrix yields four
quark tastes due to the doubling problem. These states are degenerate in the continuum but split
at non-zero lattice spacing, and as consequence of this breaking new terms and new LECs usually
denoted asC1,C2A,C2V ,C3,C4,C5A,C5V ,C6 are introduced in the chiral lagrangian.
In the Aoki regime the lagrangian (3.1) describes the LO unrooted theory. If we want to go beyond
we have to consider also the NLO terms that potentially arisefrom the discretization. However, in
contrast to the Wilson theory here the first correction appear only at NNLO, making the computa-
tion easily respect to the Wilson case. Thus if we want to study the finite volume correction to the
LECsCi we will have only to expand the LO lagrangian up to theO(ε2) order.
In order to begin we rewrite the partition function as

Z =

∫

SU(4Nf )
[dHU(x)]e−S =

∫

SU(4Nf )
DHU0 e−S(0)

U0 Zξ (U0) (3.2)

where as in the previous section we have separated the integration over the zero-modesU0 from
the integration over the fluctuationsξ . Now we can expand the functionZξ (U0) up to orderO(ε2),
perform the Gaussian integrals over the fluctuations and finally after re-exponentiating all the terms
we can absorbs theO(ε2) corrections in the renormalized LECs. At the end we can write

ZNLO =
N′

N
ZLO

(

Σe f f
,Ce f f

i

)

(3.3)

where the value of theΣe f f andCe f f
i are given in the following table.
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Σe f f = Σ
(

1− 16N2
f −1

4F2Nf
∆(0)

)

Ce f f
1 = C1

(

1− 8Nf

F2 ∆(0)
)

Ce f f
2V = C2V − C2V (16N2

f −2)+4C3Nf

2Nf F2 ∆(0) Ce f f
2A = C2A−

C2A(16N2
f −2)+4C4Nf

2Nf F2 ∆(0)

Ce f f
3 = C3−

C3(16N2
f −2)+2C2VNf

2Nf F2 ∆(0) Ce f f
4 = C4−

C4(16N2
f −2)+2C2ANf

2Nf F2 ∆(0)

Ce f f
5V = C5V

(

1− 8Nf

F2 ∆(0)
)

Ce f f
5A = C5A

(

1− 8Nf

F2 ∆(0)
)

Ce f f
6 = C6

(

1− 8Nf

F2 ∆(0)
)

Table 1. The renormalized SChPT LECs.

From a tree level expansion of the NLO chiral lagrangian we can reads the NLO masses of the
non-neutral mesons1 composed of quarkb andc

m2 = µ(mb +mc)+a2∆NLO
ξB

. (3.4)

Here the taste splittings∆NLO
ξB

depend obviously by the taste state identified by the taste matrix ξB.
All the states fall into 5 different classes : the Pseudoscalar (PS), Axial-Vector (AV), Tensor (T),
Vector (V) and Singlet (S) sector. In such channels the tastesplitting [6] can be written at NLO
when inserting our results from table 1.:

∆NLO
PS = 0 (3.5)

∆NLO
A =

16
F2 (C1 +3C3 +C4 +3C6)−

16
F4

(

8Nf [C1 +3C6]+
[C4 +3C3](16N2

f −2)+2[3C2V +C2A]Nf

2Nf

)

∆(0) (3.6)

∆NLO
T =

16
F2 (2C3 +2C4 +4C6)−

16
F4

(

32NfC6 +
[C3 +C4](16N2

f −2)+2[C2V +C2A]Nf

Nf

)

∆(0) (3.7)

∆NLO
V =

16
F2 (C1 +C3 +3C4 +3C6)−

16
F4

(

8Nf [C1 +3C6]+
[3C4 +C3](16N2

f −2)+2[C2V +3C2A]Nf

2Nf

)

∆(0) (3.8)

∆NLO
I =

16
F2 (4C3 +4C4)−

32
F4

(

[C3 +C4](16N2
f −2)+2[C2V +C2A]Nf

Nf

)

∆(0) . (3.9)

4. Summary and Discussion

Throughout this paper we have shown that in theε-regime for two-flavor Wilson chiral perturbation
theory and for generalNf staggered ChPT the NLO order partition function can be written as the
LO one with renormalized effective LECs.
This result leads to several consequences that we will expand upon in a forthcoming publication.

1For flavor neutral mesons the situation is more complicated and other terms have to be introduced in the chiral
lagrangian.
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The first regards the possibility to extend the relations between LO WChPT and SChPT with Chiral
Random Matrix Theory in its Wilson and staggered version respectively.
The second consequence is that in WChPT, due to the fact that the finite volume corrections change
the mean field potential, this effect changes the phase boundaries of the theory.
A further point is the extension of our result to Wilson ChPT with generalNf . In that case the
situation is more involved since 3 LO and 9 NLO LECs have to be introduced and naturally the
chiral lagrangian becomes more involved, including the question of possible constraints on the
signs of individual LECs and combinations of these.
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