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Symmetries play a distinctive role at the high temperature phase transition in QCD. Therefore the

spectrum of screening masses has been investigated with emphasis on taste breaking. Although

taste violation is an UV effect the relevant operators couldbe temperature dependent. We have

studied the meson screening masses in the temperature rangebetween 140 MeV to 550 MeV.

The computation has been performed using dynamicalNf = 2+1 gauge field configurations gen-

erated with the p4 staggered action. For temperatures belowthe transition an agreement with the

prediction of staggered chiral perturbation theory has been found and no temperature effect can

be observed on the taste violation. Above the transition thetaste splitting still shows anO(a2)

behavior but with a temperature dependent slope.
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1. Introduction

One of the most used formulation of lattice quantum chromodynamics (LQCD) at finite tempera-
ture is the staggered fermion formulation introduced for the first time in [1] by Kogut and Susskind.
Despite the fact that it can not solve completely the fermiondoubling problem it is computationally
cheaper and preserves a remnant of the chiral symmetry.
For every quark introduced in the theory one has four states that are usually called tastes to distin-
guish them from the ordinary flavors. In the continuum all thetastes are degenerate but they split
at non-zero lattice spacing. In order to obtain the correct number of degrees of freedom a rooting
procedure has to be introduced.
Just by counting, in a theory withNf number of flavors, there are 16N2

f -1 pion states but only
N2

f −1 pions are the true Goldstone bosons while the remaining states are unphysical. The pres-
ence of these states, that are classified according to their transformation properties under the sym-
metry group preserved by the staggered formulation [2, 3, 4], contributes to the cut-off dependence
of physical quantities computed on the lattice. In order to have a better taste symmetry there are
two possibilities, on one side one can decrease the lattice spacing and go to larger temporal ex-
tent in finite-temperature calculations or one can use an action with higher degree of improvement
[6, 7, 8, 9, 10].
In order to understand these cut-off effects due to taste symmetry breaking one usually looks at the
so called taste splitting defined as

∆ξ = m2
[ξ ]−m2

ξ5
, (1.1)

wheremξ5
is the mass of the Goldstone boson andm[ξ ] is the mass of a taste state labeled by the taste

matrix ξ . At zero temperature the lattice results (see [3, 4, 5] for the most recent investigations)
indicate that the taste splittings in the pion sector go likea2 and are in agreement with staggered
chiral perturbation theory [11, 12, 13].
At finite temperature where SχPT is in principle not reliable the situation could be different. In
the confined phase one could expect a modification of the chiral Lagrangian leading for example to
temperature dependent low energy effective constant (LECs). Moreover at temperatures above the
transition SχPT is not valid and the situation has to be better understood.
Here we address these problems studying the dependence of taste breaking on lattice spacing as
well as temperature. Using the dynamicalNf =2+1 gauge field configurations generated with the
RHMC algorithm by the RBC-Bielefeld [14] and the HotQCD [15]collaborations using the p4
staggered action we will measure the taste splitting (1.1) in a range of temperature from about 140
MeV to 550 MeV focusing on the pion sector. In order to analyzethe lattice spacing dependence
of these quantities two different sets of the lattice spacing corresponding toNτ = 6 and 8 will be
used.
In the following, after recalling some basic knowledge of staggered formulation, we will present
the results regarding the temperature dependence of taste splitting at fixed lattice spacing and the
lattice spacing dependence of that quantity having insteadfixed T. A more general analysis and
further information regarding the taste breaking in other mesonic channels has been presented in
[16].
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2. Staggered Mesons

The staggered mesons are built from the tensor product of twostaggered fields and can be divided
in two different classes. The first are the local operators where the quarkχ(x) and the anti-quark
χ̄(y) sit at the same lattice point. They can be written as

Mlocal = φ(x)χ̄(x)χ(x), (2.1)

with φ(x) being a phase factor depending on the choice of the mesonic channel. The other opera-
tors, namely the one, two, and three-link operators, definedrespectively as

Mone−link = φ(x)χ̄(x)∆iχ(x) (2.2)

Mtwo−link = εi jkφ(x)χ̄(x)∆i∆ j χ(x) (2.3)

Mthree−link = φ(x)χ̄(x)∆1∆2∆3χ(x) (2.4)

are non-local since the two staggered fields don’t sit at the same point but are shifted by the operator

∆i χ(x) = 1/2(χ(x + î)+ χ(x− î)). (2.5)

From all these states we can select and study the sixteen pionoperators that consist of two local
operators, six one-link, six two-link and two three-link operators (for more details see [2, 17]).
Every mesonic correlator contains two different states with opposite parity. It can be parametrized
as

C(z) = ANOcosh

[

M−

(

z−
Ns

2

)]

− (−1)zAOcosh

[

M+

(

z−
Ns

2

)]

. (2.6)

whereANO andAO, M+ andM− are the amplitude and the masses of the two states. The pion
states will thus appear as the oscillating or the non-oscillating contributions of such correlators.
From general group theory arguments one can show that these sixteen states are degenerate in the
continuum limit and split at non-zero lattice spacing. The pattern of this splitting can be read as

16→ 1⊕1
︸︷︷︸

local

⊕ 3⊕3
︸︷︷︸

one−link

⊕ 3⊕3
︸︷︷︸

two−link

⊕ 1⊕1
︸︷︷︸

three−link

. (2.7)

Having data for all the different states it is possible to define the so-called root-mean-squared
(RMS) pion mass1 and study it as a function of the lattice spacing

mRMS
π =

√

1
16

(

m2
ξ5

+m2
ξ0ξ5

+3m2
ξiξ5

+3m2
ξiξ j

+3m2
ξiξ0

+3m2
ξi

+m2
ξ0

+m2
I

)

. (2.8)

However from the lattice data at zero temperature (see for example [3, 4, 5]), one can see that the
pion falls into only five classes following this pattern

16→ 1⊕4⊕4⊕6⊕1 (2.9)

1In the spinor-taste basis we will indicate withγ andξ the spin and the taste gamma matrices respectively.
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instead of eight as predicted by group theory.
This fact can be well explained with Staggered Chiral Perturbation Theory ( SχPT). Indeed if we
focus only on the non-diagonal flavor pions2, one can expand the staggered chiral lagrangian and
find the tree-level masses of the pions that are given by

m2
MB

= µ(ma +mb)+a2∆ξB
(2.10)

where the mesonM is composed of two quarksa andb and where

∆(ξ5) = ∆PS= 0 (2.11)

∆(ξµ5) = ∆A =
16
f 2
π

(C1 +3C3 +C4+3C6) (2.12)

∆(ξµν) = ∆T =
16
f 2
π

(2C3 +2C4 +4C6) (2.13)

∆(ξµ) = ∆V =
16
f 2
π

(C1 +C3+3C4 +3C6) (2.14)

∆(ξI) = ∆I =
16
f 2
π

(4C3 +4C4) (2.15)

so thate.g.theξ0ξ5 andξiξ5 taste states are degenerate. As we can understand from thesesplittings,
in the pion sector there is a partial restoration of the tastesymmetry. All the states fall into five
degenerate multiplets according to theSO(4) symmetry group.
While this analysis is correct at zero temperature, it is notmore valid at finiteT since other terms
and temperature dependent LECs could appear in the chiral lagrangian.

3. Result

Here we will present the screening mass of all the pion statesat finite T, both below and above
the transition, trying to understand how the taste symmetrybreaking occurs in the range 140 MeV
< T < 550 MeV. Let us start with the pictures 1(a) and 1(c) where themasses are plotted in units
of r0 as function of the temperature atNτ = 8 andNτ = 6 respectively. While below the transition
the Goldstone boson screening mass (the local operator) remains approximatively constant, a slight
decrease of all the other masses can be observed. Above the transition, for all the channels a linear
rise of the values of the masses occurs. This can be seen also in the figures 1(b) and 1(d) where
the screening masses are plotted in unit ofT. At very high temperature their values approach from
below the free continuum result given by 2πT.
Unfortunately, differently from the zero temperature casein which all the taste states can be stud-
ied, at finite temperature there are some problems in the analysis due to the fact that the amplitude
in some channels (where they appear in pairs with other non-pseudoscalar states) dies out very
fast with rising temperature and as a consequence it is extremely difficult to extract their screening

2Simulations in which disconnected contributions are not taken into account describe only non-diagonal flavor states
π±,K±..
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masses. As a consequence we can not check a complete restoration of theSO(4) taste symmetry
as predicted by the SχPT for the zero temperature case since we don’t have acces to all the states.
However we have observed that at least anSO(3) taste restoration occurs in the pion sector. Indeed,
as we can see from the pictures, no difference between theξx andξt pions as well betweenξ5ξx

andξ5ξt can be observed. From group theory arguments in principle the symmetry under which
the multiplets should be classified at finite temperature isSO(2)×Z2.
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Figure 1: Temperature dependence of the pseudoscalar screening mass(γ5⊗ [ξ ]) in units of r0 and of the
temperature atNτ = 8 (a,b) andNτ = 6 (c,d) for different components of the multiplet identified by the
taste matrix[ξ ].

In figure (2), at fixed value of the lattice spacing the effect of the temperature on the taste splitting
for the one-link and two link operators is reported while in picture (3) we fixed the temperature
and consider how the taste splitting depends on the lattice spacing. From both figures we can
conclude that below the transition the taste splitting seems independent of the temperature. Above
Tc the situation changes and the taste splitting acquires a temperature dependence. The rising of
the Goldstone pion masses with the temperature could explain this unexpected behavior of the
taste splitting. Unfortunately it was not possible to establish the precise functional behavior of
this dependence probably because we are in the transition region, where theξ5 pion is no longer a
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Goldstone boson and at the same time we are far from the free theory regime.
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Figure 2: Effect of the temperature on the taste violation at fixedβ values : (a)β = 3.43, (b)β = 3.57
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Figure 3: Lattice spacing dependence of the taste splitting for one link (m2
γ5⊗ξxξ5

−m2
γ5⊗ξ5

)(a) and two link

meson operators (m2
γ5⊗ξx

−m2
γ5⊗ξ5

)(b) at different temperatures.
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