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In the standard model (SM), the CP violation is introduced through a single phase in the CKM
matrix. The neutral kaon system is one of the most precise channels to test how the SM theory
describes the experiment data such as εK accurately. The indirect CP violation is parametrized into
εK , which can be calculated directly using lattice QCD. In this calculation, the largest uncertainty
comes from two sources: one is B̂K and the other is Vcb. We use the lattice results of B̂K and
exclusive Vcb to calculate the theoretical estimate of εK , which turns out to be 3.1σ away from its
experimental value. Here, the error is evaluated using the standard error propagation method.
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1. Introduction

The neutral kaon system has two kinds of CP violation: indirect and direct CP violation.
Indirect CP violation is parametrized into εK . The experimental value of εK is very well known [1]:

εK = (2.228±0.011)×10−3× eiφε , φε = 43.51±0.05. (1.1)

We can also calculate εK directly from the SM using BK , Vcb, and other input parameters, which
are determined from other experiments and the SM theory. By comparing these two values, we can
test a fundamental ansatz of the SM, the unitarity of the CKM matrix.

Here, we calculate εK directly from the SM using the known parameters with their errors in
control. Two of the most important input parameters are B̂K and Vcb, which dominate the statistical
and systematic uncertainty in εK . During a past decade, lattice QCD has reduced the BK error
dramatically down to less than 5% level [2 – 4] as well as Vcb [5].

There are two independent methods to determine Vcb: inclusive channels and exclusive chan-
nel. There exists about 2 3σ difference in Vcb between inclusive and exclusive methods. We address
this issue on how this have an effect on εK .

Here, we use the Wolfenstein parameters for the CKM matrix to calculate εK mainly because
they are convenient.

Let us define a parameter ∆ which test the unitarity ansatz directly as

∆≡V ·V †− I.

Here, we calculate εK and ∆ to test the SM. The CKM matrix elements are accurate up to O(λ 5)≈
3×10−4. We use the standard error propagation method to estimate the errors.

2. Review of the Neutral Kaon Mixing: εK

The neutral kaon system forms a two dimensional Hilbert space. In this subspace, the time
evolution of the neutral kaon state vectors can be described by the effective Hamiltonian Ĥeff

i
d
dt
|K(t)〉= Ĥeff|K(t)〉, Ĥeff = M̂− i

Γ̂

2
. (2.1)

M̂ (Γ̂) is the dispersive (absorptive) part. Here, the dispersive part gives the mass eigenvalues of KS

and KL, and the absorptive part represents the decay rates of KS and KL. Let us take the basis with
the CP even |K1〉 and odd |K2〉 states,

|K1〉=
1√
2

(
|K0〉+ |K0〉

)
, |K2〉=

1√
2

(
|K0〉− |K0〉

)
. (2.2)

In this basis, the matrix elements can be written as the followings:

M =

(
M1 +im′

−im′ M2

)
, Γ =

(
Γ1 +iγ ′

−iγ ′ Γ2

)
. (2.3)

By construction of the formal perturbation theory in quantum field theory known as the Wigner-
Weisskopf theory [6], M and Γ are hermitian matrices. In addition, if we assume that the CPT
invariance is exactly respected, then m′ and γ ′ must be real.
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Solving the eigenvalue problem with this matrix representation for Heff, the eigenstates

|KS〉=
1√

1+ |ε̃|2
(|K1〉+ ε̃|K2〉), |KL〉=

1√
1+ |ε̃|2

(|K2〉+ ε̃|K1〉) (2.4)

have the mass MS,L and the decay rate ΓS,L, respectively. The small CP impurity ε̃ satisfies the
following equation

ε̃ = ε̃(0)(1+ ε̃
2). (2.5)

Here, the ε̃(0) parameter is defined as

ε̃(0) ≡
−i
(
m′− i

2 γ ′
)(

M1−M2
)
− i

2

(
Γ1−Γ2

) = eiθ sinθ(
m′

∆MK
− icotθ

γ ′

∆ΓK
)+O

(
ε̃

3
(0)

)
, (2.6)

where
∆MK = ML−MS, ∆ΓK = ΓS−ΓL, tanθ =

2∆MK

∆ΓK
. (2.7)

The solution of ε̃ can be obtained by iteration. Since ε̃(0) is of the order of 10−3, we may expand ε̃

perturbatively as follows,
ε̃ = ε̃(0)+ ε̃

3
(0)+2ε̃

5
(0)+5ε̃

7
(0)+ · · · . (2.8)

In Eq. (2.6), M1,2 and Γ1,2 can be safely replaced by the eigenvalues MS,L and ΓS,L which are
experimental observables. Note that this approximation makes an error of the size O(ε̃3

(0))≈ 10−9

which is of no interest to us. In the case of γ ′/∆ΓK , we presume the following assumptions:

• First, we make the approximation ∆ΓK ∼= Γ1 which is good up to the precision of 10−3.

• Second, we assume that the contribution from the two pion state is dominant in γ ′,Γ1 which
is good in the precision level of 10−3.

• Third, we assume that the contribution from the I = 0 two pion state is dominant in γ ′,Γ1

compared with that from the I = 2 state. This approximation is good up to the precision of
10−7.

Using these assumptions, we can approximate the γ ′/∆ΓK as follows,

γ ′

∆ΓK
= ξ0 +O

(
10−7), ξ0 ≡

ImA0

ReA0
. (2.9)

Then, we can express εK approximately as follows,

εK ≡
〈ππ(I = 0)|HW |KL〉
〈ππ(I = 0)|HW |KS〉

= ε̃(0)+ iξ0 +O
(
ε̃

3
(0)

)
= eiθ sinθ

( m′(6)
∆MK

+ξ0

)
+∆εK . (2.10)

The correction of O(ε̃3
(0)) in Eq. (2.10) is smaller than both the current experiment precision

and the size of the long distance contributions of the m′ [7]. The last expression in Eq. (2.10) is
obtained by substituting ε̃(0) with Eq. (2.6) and Eq. (2.9). The correction of ∆εK contains both
short-distance (SD) contribution and long-distance (LD) contribution, which are expected to be
about ≈ 5%[7]. Here, we also neglect this contribution from ∆εK , mainly because it is not known
to a sufficient precision theoretically.
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In this analysis, we take into account only the short-distance contribution from the dimension
6 operators m′(6). In the SM, this part can be calculated from the box diagram [8]. Here, we follow
the notations in [8]. Then, we can obtain the following master formula which will be used in this
analysis:

|εSM
K |=

√
2sinθ

(
Cε B̂KX +ξ0

)
, (2.11)

where

X = η̄λ
2|Vcb|2×

[
|Vcb|2(1− ρ̄)η2S0(xt)+η3S0(xc,xt)−η1S0(xc)

]
(2.12)

Cε =
G2

FF2
KmK0M2

W

6
√

2π2∆MK
. (2.13)

where we use the experimental value for ∆MK . The input ξ0 has been taken from the lattice calcu-
lation which accounts the long distance contribution.

GF 1.16637(1)×10−5 GeV−2 [1]

MW 80.399(23) GeV [1]

mc(mc) 1.25(9) GeV [10]

mt(mt) 162.7(1.3) GeV [10]

η1 1.43(23) [10]

η2 0.5765(65) [10]

η3 0.47(4) [10]

θ 43.51(5)◦ [1]

mK0 497.614(24) MeV [1]

∆MK 3.483(6)×10−12 MeV [1]

(a)

A
0.808(22) [1] CKMfitter
0.832(17) [1] UTfit

λ
0.2253(7) [1] CKMfitter
0.2246(11) [1] UTfit

ρ̄
0.132+0.022

−0.014 [1] CKMfitter
0.130(18) [1] UTfit

η̄
0.341(13) [1] CKMfitter
0.350(13) [1] UTfit

(b) Wolfenstein Parameters

FK
156.1(0.2)(0.8)(0.2) MeV [1]
156.1(1.1) MeV [11] LAT.AVG.

B̂K
0.7674(99) [11] LAT.AVG.
0.727(4)(38) [2] SWME

ξ0 −1.63(19)(20)×10−4 [13]

(c) Lattice Calculation

|Vcb|

41.85(42)(9)(59)×10−3 [12] (Xclν +Xsγ)Kin

41.68(44)(9)(58)×10−3 [12] (Xclν)Kin

41.87(25)×10−3 [12] (Xclν +Xsγ)1S

42.31(36)×10−3 [12] (Xclν)1S

41.5(7)×10−3 [1] Incl.PDG.AVG.
39.5(1.0)×10−3 [11] Excl.

(d) Vcb

Table 1: Input Parameters

3. Input Parameters

The parameters, mc,mt ,η1,η2,η3 depend on the renormalization scheme, and so are taken
from the single reference for consistency (Table 1a1). The CKMfitter and UTfit results in Table 1b
are obtained by their own global fit method using the same PDG inputs.

In B̂K calculation in Table 1c, BMW quotes the smallest systematic error. It dominates the
smallness of the lattice average error. RBC-UKQCD collaboration calculates ImA2 on the lattice.

1In Ref. [9], they reported results of η1 up to NNLO but end up with a noticeably larger error bar. Hence, we decide
to use the NLO value.
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Using this value, they determine ξ0 through the relation

Re
(

ε ′K
εK

)
=

1√
2|εK |

ReA2

ReA0

( ImA2

ReA2
−ξ0

)
. (3.1)

Other inputs such as ReA0,ReA2,εK , and ε ′K/εK are taken from experiments.
Inclusive Vcb can be extracted from global fit of measured moments (lepton energy, hadronic

mass, and photon energy) of the decay channels:

B→ Xclν , B→ Xsγ.

We use the PDG average value as the representative of the inclusive Vcb. The quoted exclusive Vcb

is the average of two semi-leptonic decay channels:

B→ D∗`ν , B→ D`ν .

For each scalar and vector channel, HFAG result is combined with FNAL/MILC lattice QCD cal-
culation of the zero recoil form factor.

4. Error Estimate

For the function with N arguments, the error propagation formula gives the combined error σ f

in terms of the errors of each arguments:

σ
2
f =

N

∑
j,k=1

C jk
∂ f (x)

∂x j

∣∣∣∣
〈x〉

∂ f (x)
∂xk

∣∣∣∣
〈x〉

σx j σxk , (4.1)

where C jk denotes the normalized correlation between the parameters x j and xk, and |Ci j| ≤ 1.
Especially the diagonal components Cii = 1. We turn off the correlation and so Ci j = δi j. In the
case of asymmetric error, ρ̄ given by CKMfitter, we take a larger error and treat it as a symmetric
error.

For εSM
K ,

f (x) = |εK(x)| (4.2)

x = (θ ,GF ,FK ,mK0 ,MW ,∆MK ,ξ0, B̂K ,λ , ρ̄, η̄ , |Vcb|,η1,η2,η3,xc,xt). (4.3)

To check the unitarity of the CKM matrix,

fi j(x) = [V (x)V †(x)− I]i j ≡ ∆i j (4.4)

x = (A,λ ,ρ,η ; |Vcb|). (4.5)

We use the Wolfenstein parametrization to evaluate each elements of the CKM matrix Vi j, except
for Vcb itself. Real and imaginary part of ∆i j are separately treated.
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(a) CKMfitter
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Figure 1: εK(×103)

5. Results

The Wolfenstein parameter set, B̂K , and Vcb has a multiple choice. It forms 8 input parameter
sets. We calculate εSM

K for these sets as shown in Fig. 1. We find out that |εK | shows 3.1σ tension
between |εExp

K | and |εSM
K |, using exclusive Vcb and SWME calculation of BK as shown in Fig. 1a.

With the UTfit Wolfenstein parameters, the tension is slightly reduced to 2.9σ [Fig. 1b].
The deviation matrix ∆ provides a test of the Wolfenstein parameters, outputs of the global fit.

These are inputs for the εSM
K , as well. So testing the compatibility between the global fit results and

the Vcb is needed to interpret the difference between εSM
K and εSM

K . We find that the numerical size
of ∆i j has the following hierarchy

102O
(
|Re∆12|

)
= 10O

(
|Re∆22|

)
= O

(
|Re∆23|

)
. (5.1)

Re∆22 shows that the difference between exclusive Vcb and Wolfenstein parameters from CKMfitter
(UTfit) are about 1.0σ (1.8σ ) as shown in Fig. 2a and 2b. Re∆23 shows the difference about 1.0σ

(1.8σ ) as shown in Fig. 2c and 2d. Other components of ∆, which does not depend on the choice
of inclusive or exclusive Vcb, are so small as to be consistent with the unitary ansatz.

In Table 2, Vcb dominates the error of εSM
K regardless of the inclusive or exclusive determina-

tion. In case of the SWME calculation of BK and inclusive Vcb, both contribute to the total error in
comparable size. In the case of the lattice average of BK , Vcb becomes an extremely dominant error
and the subdominant error comes from η̄ .

W.P. Vcb BK mc η1 η3 FK BK ξ0 ρ̄ η̄ Vcb

CKMfitter
Incl.

LAT.AVG. 10.62 5.24 12.50 2.36 1.98 1.85 4.29 17.29 41.43
SWME 8.10 4.00 9.53 1.80 25.06 1.57 3.28 13.19 31.61

Excl.
LAT.AVG. 7.94 3.92 9.34 1.53 1.28 1.68 2.63 11.17 58.99
SWME 6.61 3.26 7.78 1.27 17.67 1.56 2.19 9.29 49.10

Table 2: Error Fractions σ2
i /∑σ2

j . The UTfit Wolfenstein parameters(W.P) show the same tendency.
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-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Incl.Vcb Excl.Vcb

(b) Re∆22(UTfit)

-3
-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

Incl.Vcb Excl.Vcb

(c) Re∆23(CKMfitter)
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Figure 2: Re∆22(×104) and Re∆23(×103) to test the CKM unitarity.
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