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are equivalent to a generalized version of vector Potts models in two dimension, with Polyakov
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1. Introduction and motivations

After the discovery of the Berezinskii-Kosterlitz-Thouless (BKT) phase transition [1, 2, 3],
almost 40 years ago, this phenomenon still remains an interesting subject.

It is widely known that this kind of transition occurs in a variety of two-dimensional (2D)
systems like, for instance, the most elaborated one represented by the 2D XY model. However,
there are several indications that the BKT phase transitions are also presents in some 3D lattice
gauge models at finite temperature. Here we study 3D Z(N) lattice gauge theories (LGT) at finite
temperature in the strong coupling regime.

While the phase structure of 3D pure Z(N) LGT for N = 2,3 has been the subject of an
intensive study, much less is known about the finite-temperature deconfinement transition when
N > 4. On the basis of the Svetitsky-Yaffe conjecture [4] that connect critical properties of 3D
Z(N) LGT with the corresponding properties of 2D spin models, we perform this study in order:

• to clarify the order of the phase transitions that occur (if they are of BKT-type) and then
to check the prediction for the magnetic critical indexη and the compatibility with theXY
value for the indexν ;

• to confirm the universality with 2D Z(N) vector models and to provide checking-points of
universality with 3D SU(N) LGT in the strong coupling region.

1.1 The Model

We consider a 3D latticeΛ = L2×Nt with spatial (temporal) extensionL (Nt);~x= (x0,x1,x2)

wherex0 ∈ [0,Nt −1] andx1,x2 ∈ [0,L−1] represent the sites of the lattice anden the unit vector
in then-th direction. We denotept (ps) temporal (spatial) plaquettes,lt (ls) temporal (spatial) links
and periodic boundary conditions on gauge fields are imposedin all directions. The conventional
plaquette angless(p) is

s(p) = sn(x)+sm(x+en)−sn(x+em)−sm(x) . (1.1)

The partition function can be expressed as

Z(Λ;βt ,βs;N) = ∏
l∈Λ

(

1
N

N−1

∑
s(l)=0

)

∏
ps

Q(s(ps)) ∏
pt

Q(s(pt)) , (1.2)

where the most generalZ(N)-invariant Boltzmann weight withN−1 different couplings is

Q(s) = exp

[

N−1

∑
k=1

βp(k)cos
2πk
N

s

]

. (1.3)

The Wilson action corresponds to the choiceβp(1) = βp, βp(k) = 0,k= 2, ...,N−1.
To study the 3D Z(N) LGT in the strong coupling limit (βs= 0) one can map the gauge model

to a generalized 2D spinZ(N) model with the action

S = ∑
x

2

∑
n=1

N−1

∑
k=1

βk cos

(

2πk
N

(s(x)−s(x+en))

)

. (1.4)
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The effective coupling constantsβk are derived from the coupling constantβt ≡ β of the Z(N)

LGT, using the following equation (the Wilson action is usedfor the gauge model):

βk =
1
N

N−1

∑
p=0

ln(Qp)cos

(

2π pk
N

)

, (1.5)

where

Qk =
N−1

∑
p=0

(

Bp

B0

)Nt

cos

(

2π pk
N

)

, (1.6)

Bk =
N−1

∑
p=0

exp

[

β cos

(

2π p
N

)]

cos

(

2π pk
N

)

. (1.7)

In the strongly coupled 3D Z(N) LGT one expects a scenario with three phases. Therefore
two phase transitions must separate these three phases whenN > 4 (BKT for N > 5):

• transition from high-temperature to massless phase withη = 1/4;

• transition from massless phase to low-temperature phase with the predictionη = 4/N2.

1.2 Observables

Below are listed all the observables used in this work:

• the absolute value of the complex magnetization:

ML = ∑
x∈Λ

exp

(

2π i
N

s(x)

)

= |ML|e
iψ ; (1.8)

• the real part of the "rotated" magnetizationMR = |ML|cos(Nψ) and the normalized rotated
magnetizationmψ = cos(Nψ) ;

• the quantity called “population”:

SL =
N

N−1

(

maxi=0,N−1(ni)

L2 −
1
N

)

, (1.9)

whereni is number ofs(x) equal toi;

• the related susceptibilitiesχ (M)
L , χ (MR)

L , χ (S)
L of the real part of the complex magnetization, of

the rotated magnetization and of the populationSL, respectively;

• the reduced fourth-order Binder cumulantU (M)
L defined as

U (M)
L = 1−

〈|ML|
4〉

3〈|ML|2〉2 ; (1.10)

• the cumulantB(MR)
4 defined as

B(MR)
4 =

〈|MR−〈MR〉|
4〉

〈|MR−〈MR〉|2〉2 ; (1.11)
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• the helicity modulus [5]

ϒ = 〈e〉−L2β
〈

s2〉 , (1.12)

wheree≡ 1
L2 ∑<i j>x

cos(θi −θ j) ands≡ 1
L2 ∑<i j>x

sin(θi −θ j) with θi ≡
2π
N s(i).

We have simulated models withN=5,7,9,13 on lattices ranging fromL = 128 toL = 2048.

2. Results

2.1 Determination of the critical temperatures

In order to extract the critical indices we need to locate thecritical temperatures. Below we
list the methods used to do that for the first critical coupling β (1)

c :
(a) we locate the positions of theβ (1)

pc (L) from the peak of the susceptibilityχ (M)
L of |ML| on

various lattice sizes and we findβ (1)
c by a fit with the following scaling function (withν equal to

1/2):

β (1)
pc = β (1)

c +
A

(lnL+B)
1
ν

; (2.1)

(b) we estimate the crossing point of the Binder cumulantU (M)
L versusβ on different lattices

or, alternatively, we search for the value ofβ (1)
c which optimizes the overlap of these curves when

they are plotted against(β −β (1)
c )(lnL)1/ν (ν=1/2);

(c) we consider the helicity modulusϒ near the phase transition and defineβ (1)
pc (L) as the

value ofβ such thatη(β )≡ 1/(2πβϒ) = 1/4 on the various lattices; we then findβ (1)
c through the

function

β (1)
pc = β (1)

c +
A

lnL+B
, (2.2)

valid under the assumption that the phase transition belongs to theXY universality class.
To determineβ (2)

c we use:
(d) the same as the method (a) using instead the susceptibility χ (S)

L of the populationSL;
(e) the same as the method (b) using instead simultaneously the Binder cumulantB(MR)

4 and
the order parametermψ .

We show in Figs. 1, 2 and 3 the behavior of some of these observables and the method adopted
to locate the critical couplings. All Tables with the estimations are collected in [6].

2.2 Determination of the critical indices

After the determination of theβc couplings we can extract some critical indices and check
the hyperscaling relationd = 2β/ν + γ/ν , whered is the dimension of the system. For the first
transition, according to the standard FSS theory the magnetization |ML| at criticality should obey
the relation|ML| ∼ L−β/ν for L large enough. Taking into account the possibility of logarithmic
corrections we use

|ML|= AL−β/ν lnr L and χ (M)
L = ALγ/ν lnr L , (2.3)

where the second formula is for the susceptibilityχ (M)
L , with γ/ν = 2−η (η magnetic critical

index).
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Figure 1: The two plots in the first line illustrate the method (a), while those on the second line illustrate the
method (d).
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Figure 2: The two plots in the first column illustrate the method (b), while the remaining are illustrations of
the method (e).
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Figure 3: Behavior of the helicity modulusϒ for two models considered, as an illustration of the method
(c); the solid line represents the curveϒ = 1/(2πβ η), η = 1/4.
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L Lη−2 and the Binder cumulantB(MR)
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(up and left) and forη = 0.0816 (up and right) for different lattice sizes.MRLη/2 versusmψ in Z(7) with
Nt = 2 (down and left) and inZ(7) with Nt = 4 (down and right) forη = 0.0816 for different values of lattice
sizeL.

We apply the same procedure to the second transition with thedifference that the fit with the
scaling laws Eqs. (2.3) is to be applied to data forMR andχ (MR)

L , respectively. We found, in general,
a reasonable agreement with the expectations (all the details and tables can be found in [6]).

The critical exponentη , for both transitions in these models can be calculated without knowl-
edge of the critical temperature, building a suitable universal quantity [7]. We show in Fig. 4 some
results of the behavior of these RG invariant quantities forthe Z(7) model withNt = 2,4. The
results for theη index is consistent with the FSS method.
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3. Summary and Outlook

We have determined the two critical couplings ofZ(N = 5,7,9,13) LGT and given estimates
of the critical indicesη at both transitions. Our findings support for allN > 5 the scenario of
three phases: a disordered phase at high temperatures, a massless or BKT one at intermediate
temperatures and an ordered phase, occurring at lower and lower temperatures asN increases. This
matches perfectly with theN → ∞ limit, i.e. the 3D U(1) LGT (atβs= 0), where the ordered phase
is absent. We have found that the values of the critical indexη at the two transitions are compatible
with the theoretical expectations. The indexν also appears to be compatible with the value 1/2, in
agreement with RG predictions (see [6] and [8]).

Considering the determinations of the critical couplings as a function ofN, we have also
conjectured the approximate scaling forβ (1,2)

c (N). We found thatβ (1)
c converges to theXY value

very fast, like exp(−aN2) andβ (2)
c diverges likeN2 (see [6]).

On the basis of these results we are prompted to conclude thatfinite-temperature 3D Z(N)

LGT for N > 4 undergoes two phase transitions of the BKT type and this model also belongs to the
universality class of the 2D Z(N) spin models, at least in the strong coupling limitβs = 0.

The new numerical techniques tested in these models can be useful to study other models of
interest like the 3D SU(N) LGT at finite temperature and in the strong coupling region.

Acknowledgments

The work of O.B. was supported by the Program of Fundamental Research of the Department
of Physics and Astronomy of NAS, Ukraine. The work of G.C. andM.G. was supported in part by
the European Union under ITN STRONGnet (grant PITN-GA- 2009-238353).

References

[1] V. L. Berezinsky, Sov. Phys. JETP.32 (1971) 493.

[2] J. M. Kosterlitz and D. J. Thouless, J. Phys. C.6 (1973) 1181.

[3] J. M. Kosterlitz, J. Phys. C.7 (1974) 1046.

[4] B. Svetitsky, L. Yaffe, Nucl. Phys. B210 (1982) 423.

[5] R. Nelson and J.M. Kosterlitz, Phys. Rev. Lett.39 (1977) 1201.

[6] O. Borisenko, V. Chelnokov, G. Cortese, R. Fiore, M. Gravina, A. Papa, I. Surzhikov, Phys. Rev. E86
(2012) 051131.

[7] D. Loison, J. Phys.: Condens. Matter11 (1999) L401.

[8] O. Borisenko, V. Chelnokov, G. Cortese, R. Fiore, M. Gravina, A. Papa, Phys. Rev. E85 (2012)
021114.

7


