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1. Introduction

The measurement and characterizaton of the weak lensing of the cosmievavierback-
ground (CMB) by the large-scale structure distribution is a promising atinkdteld of research
in observational cosmology (for a review of the physics of CMB weakihgnsee [1]). Measure-
ments of this signal can break fundamental degeneracies that afflicigh@togical interpretation
of measurements of the CMB power spectrum [2] as well as help to improveotisraints on
the cosmological parameters [3, 4]. As a result, a number of ongoinglandgal experiments are
targeting the weak lensing signal as one of their primary science goals.

The Atacama Cosmology Telescope (ACT) collaboration made the first detexftiveak
lensing signal using CMB data alone [5] and the South Pole Telescopg ¢(8Pfdboration have
followed with a detection at higher significance [6] as well as detecting tireletion of the weak
lensing ‘convergence’ and large-scale structure tracers from the-fiéitdl Infrared Survey Ex-
plorer and Spitzer/IRAC [7]. First applications of the weak lensing sigredsurements have been
to provide corroborating evidence for the cosmological constant frtdB @ata alone [8] and to
improve constraints on the dark energy equation of state [6]. In the futnpeoved cosmological
constraints are expected from the full SPT and ACT surveys, andieipérom Planck which is
poised to significantly advance lensing studies [9, 10].

Astrophysical foregrounds represent a major source of contamingtitime lensing signal
[11, 6, 12, 9]. Specially this is true for lensing reconstruction from ChMapzation data, which
is dominated by Galactic diffuse foregrounds. To date there has beepegdis study on the
possible impact of Galactic polarized dust emission on the detection of thedesigiral.

In the light of several ongoing ground-based and balloon-borne @di&ization experiments
including ACTPol [13], SPTPol [14], EBEX [15] and POLARBEAR [JLtn this work we perform
a case study of an EBEX-like experimental configuration.

2. CMB and polarized dust smulations

We simulate CMB polarization and diffuse polarized dust emission orf & 1I3° patch of
sky located at (RA, Dec) = (75-44.5°), corresponding tol (b)=(250°,—38°) in Galactic coor-
dinates. We assume a three band experimental configuration with chahaél3, 250 and 410
GHz observing to depths of 5.25, 14.0 and 14Q:umg —arcmin respectively, each with an angular
resolution of 8

The intensity of our Galactic polarized dust model is given by the model ¢fddtrapolated
to 410 GHz. Then, to simulate polarized emission, polarization angles ar@ $atge angular
scales using the WMAP dust template [18], while on smaller scales, extrai@apower is added
using the prescription of [19]. The polarization fractign,is assumed to be spatially constant,
and we investigate three cases of 3.6, 5, and 10%, intended to braclkeftetiage high Galactic
latitude dust polarization detected in the WMAP W band [20], and possiblehéitst polarization
fractions observed by ARCHEOPS at 353 GHz [21]. The dust is s¢eded the 410 GHz band
to the lower frequency bands assuming a greybody frequency scatimd w 18K andf = 1.65,
with the dust temperature and spectral index both assumed to be unifarss #oe patch.
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For our CMB simulations, we produced two sets of 100 realizations—lenstdidensed—
with 0.76 pixel size, assuming the WMAP 7-year best-fit cosmological parametezs/f22], and
with our fiducial CMB polarization power spectra calculated using CAMB.[23

The first set of maps—the lensed CMB realizations—were obtained standimgttie unlensed
fiducial power spectrunﬁ:}”, from which Gaussian realizations of the CMB polarization were
generated, which were then lensed by remapping the pixels by the defleetébnTihe deflection
field is in turn is derived from a Gaussian realization of the projected pokgraveer spectrum
Cf‘p; we neglect the effect of the integrated Sachs-Wolfe effect induosfélationcz("’. We have
chosen our pixel size to be small compared to the RMS of the deflection §rgk8sso that errors
due to interpolation back onto the regular grid after remapping are small. Wéechacked that the
E andB-mode power spectra of these simulated lensed maps reproduces thepewsedpectra
obtained from CAMB to within a few percent accuracy for themode spectrum and to within
five percent accuracy for tH&mode spectrum. While this is less accurate than the all-sky lensing
simulations now performed by several groups using various interpolatiuenses [24] [25] [26]

[4], we believe that our flat-sky simulations are sufficiently accurate iodast foreground study.
The second set of maps—the unlensed CMB realizations—were obtaineGaussian realiza-
tions of the lensed fiducial power spectrL@‘,\(. These maps have the same power spectrum as the

lensed CMB realizations, but have none of the lensing-induced noss@auity. Since the power
spectrum of the convergence reconstructed on unlensed CMB mapsésasathe lensing noise
power spectrum derived analytically, these maps have been usedefciking the accuracy and
implementation details of the convergence and power spectrum estimators|l as whe testing

effect of mask apodization.

Finally the CMB maps are scaled to antenna temperature units in the three bas@s 250
and 410 GHz, smoothed with ahl8am, and uncorrelated Gaussian white noise is added to each
pixel.

3. Resaults

This section describes our results in which we calculate the level of lensiathiat is expected
from our dust polarization model.

Our convergence reconstruction pipeline, the Hu and OkaEBtquadratic estimator [27],
is validated under the most idealized foreground-free case. We us&@MBamnodes in the range
Imin < £ < Imax, Where the minimum multipole is chosen to be twice the Nyquist mkglg,—
1m/AB, whereAf is the angular size of the patch in radians, while the maximum multipole is
determined by the noise level and beam size of the experiment. For oupgase28, andmax =
3000. As we will show later, the choice kfi, becomes important when investigating the effect of
foregrounds, while varyingyax does not significantly change our results.

Our pipline recovered unbiased estimates for two noise and beam casested 5.25
uK—arcmin sensitivity and’@&ngular resolution, EBEX type experiment, and a survey witki 4 arcmin
sensitivity and 1.4angular resolution similar to the planned ‘ACTPol Deep’ survey of [13]e T
variance obtained from a 100 Monte Carlo simulation is in agreement with
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Figure 1. Template cleaning vs removing foreground contaminatedasfm debiasing lens reconstruction.
The left and right columns show the convergence power spegtd lensing noise ratios (relative to the
foreground-free case) respectively, while the upper angtaows are for thgp = 0.1 andp = 0.036 cases
respectively. Both methods effectively recovers unbidseding estimates for low and high polarization
fractions at the minimal cost of lensing noise.

For these tests as well as for our study below we have applied a binniegheéh = 98 (thirty
bins betweer = 40 and?¢ = 3000).

3.1 Dust polarization biasat 150 GHz

To first assess the size of the dust contamination on the patch we areszongsidie estimated
the power spectrum of the simulated dust at 150 GHz and comparel @ndB-mode signal and
noise power spectra. For our dust model and choice of patclt, trelB-mode power spectra of
the dust approximately follow a powerlaw given ®§S'= (A x p)?¢8, wherep is the polarization
fraction, A ~ 120uK and 8 ~ —3.5. Our previous study [28] has shown that polarized dust at
this level of power must be modeled and subtracted in order to derivesatb&stimated of the
inflationary B-mode spectrum, a cosmological signal which is accessible i £n200 range of
the B-mode power spectrum. The main question we seek to address in this studgtiseewthis
level of anisotropy power of foreground contamination is large enouglstobias the estimates of
the lensing signal.

We have calculated the power spectrum of the convergence field taatied with theEB
guadratic estimator using the dust contaminated 150 GHz channel, and shi@gwts in Figure 1
for two different polarization fractions gb = [0.036,0.1]. We find that if the dust contamination
is ignored during the lensing estimation, then a ‘dust noise bias’ dominatetheMensing power
spectrum estimates fgr= 0.1, and slightly biases the= 0.036.
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Although our demonstration of the dust bias will be dependent on the cbbp=dch we have
assumed, and on the details of our polarized dust model and its powérmuspewe nonetheless
conclude that diffuse polarized dust may in principle be a source of brakifure sub-orbital
CMB surveys aiming at lensing estimates usingHeestimator, and that methods for foreground
debiasing must therefore be developed.

3.2 Discussion

To mitigate the impact of lensing bias due to polarized dust, firstly we considenether
template-based foreground cleaning methods [29, 30, 31] can allowseabéstimate of the con-
vergence power spectrum. We used an approximate template-basedgleetiod in which the
dust-dominated 410 GHz channel is used as a polarized dust template tessutiye foreground
contamination in the 150 GHz channel. The dust amplitude coeffiaignis estimated by max-
imising the likelihood

—a 2 (Uso— 0g x Ua10)?
2z -y (Qus0 i x Qa10) N (U1so T x Ug10) 7 (3.2)
P 0Q,150 03,150

where the pixel size has first been degraded.16 8Once the template coefficient has been esti-
mated then the full resolution maps are appropriately combined, and the nprspagated using

08,0311+ a3, 31
(l— ad)z

04, 05] = (3.3)
Figure?? shows our results from our template cleaning as well as low multipole filtering we will
discuss below. Our basic finding is that at lease for the foreground Imedeonsidered, with a
constant dust spectral index scaling, template cleaning provides a witaraative for unbiased
reconstruction of the lensing field, in the sense that the final noise lethed ofeaned CMB estimate

is fairly insensitive to the level of foreground contamination.

Secondly, since the dust contamination has a ‘red’ anisotropy powetrgpe and this sug-
gests a possible strategy for mitigating the dust bias. As long as we havenatfon about
the power spectrum of dust, then filtering the low-multipole modes can be usediice the
bias [32, 6], perhaps at an acceptable cost to the variance. We emandtrated this technique
by varyinglmin, and found that appropriate tuning of this parameter can indeed redeichish
bias effect. Specifically we found that the valuelgf, that results in unbiased estimates of the
convergence power spectrum depends on the polarization fractioe dbrieground: the greater
the foreground level, the more aggressive the required low-multipole fiteFar our dust model
and choice of patch, the approximate required filtering scale is givépiby 100x (p/0.036).

For dust polarization fractions less tha®®, we found that the loss in the signal due tolthg cut
is small enough to yield error bars close to the foreground-free casggure 1, we show the per-
formance of low multipole filtering. We usé#in, = 400 forp = 0.1 and/y,, = 100 for p = 0.036.
In both cases the input convergence power spectrum is recoveredmniyth slight increase in the
variance with respect to a no foreground case.
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4. Conclusions

Several ongoing and planned CMB polarization experiments are aiming tareesasd char-
acterise the lensing of the cosmic microwave background, in order to impomsdraints on the
parameters of the cosmological model. Within this context we have made thepistic study
of the possible effect of diffuse polarized dust emission on the acgwfaihe reconstruction of
the lensing convergence signal. Our particular focus has been aormpérf) a case study of a
three channel balloon-borne CMB experiment covering the frequearagye 150-410 GHz. Our
numerical investigation is based on a dust polarization simulation and a flatagkgmentation
of the Hu and Okamoto quadratic estimator [27]. We found that for the stoghpander consid-
eration, which is near to the region of sky that will be targeted by the EBE¢m@xent, and for
plausible dust polarization fractions in the range 3.6—10%, the anisotifdpye aiffuse dust po-
larization will be large enough at 150 GHz to bias the reconstruction of theecgence. Thus a
multi-frequency experimental approach is imperative, and approprialgsis methods must be
developed for debiasing the effect of polarized dust.

In order to mitigate the effect of the dust and to debias the convergemnasr gpectrum, we
demonstrated that removing the lower-multipole foreground-contaminated @bties from the
lensing reconstruction, as well as using the 410 GHz channel as a shygate provide two further
methods for diffuse foreground mitigation.

These results were first presented in [33]
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