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1. Introduction

Bottomonium is the bound system ofbb̄ quarks and is considered an excellent laboratory
to study Quantum Chromodynamics (QCD) at low energies. The system is approximately non-
relativistic due to the largeb quark mass, and therefore the quark-antiquark QCD potential can be
investigated viabb̄ spectroscopy.

The spin-singlet stateshb(nP) andηb(nS) alone provide information concerning the spin-spin
(or hyperfine) interaction in bottomonium. Measurements of thehb(nP) masses provide unique
access to theP-wave hyperfine splitting, the difference between the spin-weighted average mass of
the P-wave triplet states (χbJ(nP) or n3PJ) and that of the correspondinghb(nP), or n1P1. These
splittings are predicted to be close to zero [1], and recent measurements ofthehc(1P) mass vali-
dates this expectation for charmonium.

Recently, the CLEO Collaboration observed the processe+e− → hc(1P)π+π− at a rate com-
parable to that fore+e− → J/ψπ+π− in data taken above open charm threshold [2]. Such a large
rate was unexpected because the production ofhc(1P) requires ac-quark spin-flip, while produc-
tion of J/ψ does not. Similarly, the Belle Collaboration observed anomalously high rates for
e+e− → ϒ(nS)π+π− (n = 1,2,3) at energies near theϒ(5S) mass [3]. Together, these observations
motivated a more detailed study of bottomonium production at theϒ(5S) resonance.

We use a 121.4fb−1 data sample collected on or near the peak of theϒ(5S) resonance (
√

s ∼
10.865GeV) with the Belle detector [4] at the KEKB asymmetric energye+e− collider [5].

2. Observation of hb(nP)

Our hadronic event selection requires a reconstructed primary vertex consistent with the run-
averaged interaction point, at least three high-quality charged tracks. The π+π− candidates are
pairs of well reconstructed, oppositely charged tracks that are identified as pions and are not con-
sistent with being electrons. Continuume+e− → qq̄ (q = u,d,s,c) background is suppressed by
requiring the ratio of the second to zeroth Fox-Wolfram moments to satisfyR2 < 0.3. More details
can be found in Ref. [11].

We calculate missing mass defined asMmiss(π+π−)≡
√

(Pϒ(5S)−Pπ+π−)2, wherePϒ(5S) is the

4-momentum of theϒ(5S) determined from the beam momenta andPπ+π− is the 4-momentum of
theπ+π− system. TheMmiss(π+π−) spectrum is divided into three adjacent regions with bound-
aries atMmiss(π+π−) = 9.3, 9.8, 10.1 and 10.45GeV/c2 and fitted separately in each region. In the
third region, prior to fitting, we perform bib-by-bin subtraction of the background associated with
theK0

S → π+π− production. To fit the combinatorial background we use a 6th (7th) orderCheby-
shev polynomial function for the first two (third) region. The signal component of the fit includes all
signals observed in theµ+µ−π+π− data as well as those arising fromπ+π− transitions tohb(nP)

andϒ(1D). The peak positions of all signals are floated, except that forϒ(3S) → ϒ(1S)π+π−,
which is poorly constrained by the fit. TheMmiss(π+π−) spectrum, after subtraction of all the
background contributions along with the signal component of the fit function overlaid is shown in
Fig. 1, where clear signals of bothhb(1P) andhb(2P) are visible. The signal parameters are listed
in Table 1. Statistical significance of all signals except that for theϒ(1D) exceeds 5σ .
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Figure 1: The inclusiveMmiss(π+π−) spectrum with the combinatorial background andK0
S contribution

subtracted (points with errors) and signal component of thefit function overlaid (smooth curve). The vertical
lines indicate boundaries of the fit regions.

Table 1: The yield and mass determined from the fits to theMmiss(π+π−) distributions.

Yield, 103 Mass, MeV/c2

ϒ(1S) 105.2±5.8±3.0 9459.4±0.5±1.0
hb(1P) 50.4±7.8+4.5

−9.1 9898.3±1.1+1.0
−1.1

3S → 1S 56±19 9973.01
ϒ(2S) 143.5±8.7±6.8 10022.3±0.4±1.0
ϒ(1D) 22.0±7.8 10166.2±2.6
hb(2P) 84.4±6.8+23.

−10. 10259.8±0.6+1.4
−1.0

2S → 1S 151.7±9.7+9.0
−20. 10304.6±0.6±1.0

ϒ(3S) 45.6±5.2±5.1 10356.7±0.9±1.1

The measured masses ofhb(1P) andhb(2P) areM = (9898.3± 1.1+1.0
−1.1)MeV/c2 andM =

(10259.8±0.6+1.4
−1.0)MeV/c2, respectively. Using the world average masses of theχbJ(nP) states,

we determine the hyperfine splittings to be∆MHF = (+1.6±1.5)MeV/c2 and(+0.5+1.6
−1.2)MeV/c2,

respectively, where statistical and systematic uncertainties are combined in quadrature.

We also measure the ratio of cross sectionsR ≡ σ(hb(nP)π+π−)
σ(ϒ(2S)π+π−) . To determine the reconstruction

efficiency we use the results of resonant structure studies reported below. We determine the ratio of
cross sections to beR = 0.46±0.08+0.07

−0.12 for thehb(1P) andR = 0.77±0.08+0.22
−0.17 for thehb(2P).

Henceϒ(5S) → hb(nP)π+π− andϒ(5S) → ϒ(2S)π+π− proceed at similar rates, despite the fact
that the production ofhb(nP) requires a spin-flip of ab-quark.

3. Observation of Zb(10610and Zb(10650)

As it was mentioned above, the processesϒ(5S) → hb(nP)π+π−, which require a heavy-
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Figure 2: Dalitz plots forϒ(2S)π+π− events in the (a)ϒ(2S) sidebands; (b)ϒ(2S) signal region. Events to
the left of the vertical line are excluded.

quark spin flip, are found to have rates that are comparable to those for the heavy-quark spin
conserving transitionsϒ(5S) → ϒ(nS)π+π−, wheren = 1,2,3. These observations differ from
apriori theoretical expectations and strongly suggest that some exotic mechanisms are contributing
to ϒ(5S) decays.

First we perform an amplitude analysis of three-bodyϒ(5S) → ϒ(nS)π+π− decays. To re-
constructϒ(5S) → ϒ(nS)π+π−, ϒ(nS) → µ+µ− candidates we select events with four charged
tracks with zero net charge that are consistent with coming from the interaction point. Charged
pion and muon candidates are required to be positively identified. Exclusively reconstructed events
are selected by the requirement|Mmiss(π+π−)−M(µ+µ−)| < 0.2 GeV/c2. Candidateϒ(5S) →
ϒ(nS)π+π− events are selected by requiring|Mmiss(π+π−)−mϒ(nS)|< 0.05GeV/c2, wheremϒ(nS)

is the mass of anϒ(nS) state [7]. Sideband regions are defined as 0.05GeV/c2 < |Mmiss(π+π−)−
mϒ(nS)| < 0.10GeV/c2. To remove background due to photon conversions in the innermost parts
of the Belle detector we requireM2(π+π−) > 0.20/0.14/0.10GeV/c2 for a final state with an
ϒ(1S),ϒ(2S),ϒ(3S), respectively. More details can be found in Ref. [6].

Amplitude analyses are performed by means of unbinned maximum likelihood fits totwo-
dimensionalM2[ϒ(nS)π+] vs. M2[ϒ(nS)π−] Dalitz distributions. The fractions of signal events
in the signal region are determined from fits to theMmiss(π+π−) spectrum and are found to be
0.937±0.015(stat.), 0.940±0.007(stat.), 0.918±0.010(stat.) for final states withϒ(1S), ϒ(2S),
ϒ(3S), respectively. The variation of reconstruction efficiency across the Dalitz plot is determined
from a GEANT-based MC simulation. The distribution of background eventsis determined using
sideband events and found to be uniform across the Dalitz plot.

Dalitz distributions of events in theϒ(2S) sidebands and signal regions are shown in Figs. 2(a)
and 2(b), respectively, whereM(ϒ(nS)π)max is the maximum invariant mass of the twoϒ(nS)π
combinations. Two horizontal bands are evident in theϒ(2S)π system near 112.6 GeV2/c4 and
113.3 GeV2/c4, where the distortion from straight lines is due to interference with other interme-
diate states, as demonstrated below. One-dimensional invariant mass projections for events in the
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Figure 3: Comparison of fit results (open histogram) with experimental data (points with error bars) for
events in theϒ(2S) (top) andϒ(3S) (bottom) signal regions. The hatched histogram shows the background
component.

ϒ(nS) signal regions are shown in Fig. 3, where two peaks are observed in theϒ(nS)π system near
10.61GeV/c2 and 10.65GeV/c2. In the following we refer to these structures asZb(10610) and
Zb(10650), respectively.

We parametrize theϒ(5S) → ϒ(nS)π+π− three-body decay amplitude by:

M = AZ1 +AZ2 +A f0 +A f2 +Anr, (3.1)

whereAZ1 andAZ2 are amplitudes to account for contributions from theZb(10610) andZb(10650),
respectively. Here we assume that the dominant contributions come from amplitudes that preserve
the orientation of the spin of the heavy quarkonium state and, thus, both pions in the cascade decay
ϒ(5S) → Zbπ → ϒ(nS)π+π− are emitted in anS-wave with respect to the heavy quarkonium sys-
tem. An angular analysis support this assumption [8]. Consequently, we parametrize the observed
Zb(10610) andZb(10650) peaks with anS-wave Breit-Wigner functionBW (s,M,Γ) =

√
MΓ

M2−s−iMΓ ,
where we do not consider possibles-dependence of the resonance width. To account for the possi-
bility of ϒ(5S) decay to bothZ+

b π− andZ−
b π+, the amplitudesAZ1 andAZ2 are symmetrized with

respect toπ+ andπ− transposition. Using isospin symmetry, the resulting amplitude is written as

AZk = aZk e
iδZk (BW (s1,Mk,Γk)+BW (s2,Mk,Γk)), (3.2)

5
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Figure 4: The (a)hb(1P) and (b)hb(2P) yields as a function ofMmiss(π) (points with error bars) and results
of the fit (histogram).

wheres1 = M2[ϒ(nS)π+], s2 = M2[ϒ(nS)π−]. The relative amplitudesaZk , phasesδZk , massesMk

and widthsΓk (k = 1,2) are free parameters. We also include theA f0 andA f2 amplitudes to account
for possible contributions in theπ+π− channel from thef0(980) scalar andf2(1270) tensor states,
respectively. We use a Breit-Wigner function to parametrize thef2(1270) and a coupled-channel
Breit-Wigner function for thef0(980). The mass and width of thef2(1270) state are fixed at their
world average values [7]; the mass and the coupling constants of thef0(980) state are fixed at
values determined from the analysis ofB+ → K+π+π−: M[ f0(980)] = 950 MeV/c2, gππ = 0.23,
gKK = 0.73 [9].

Following suggestions in Ref. [10], the non-resonant amplitudeAnr is parametrized asAnr =

anr
1 eiδ nr

1 +anr
2 eiδ nr

2 s3, wheres3 = M2(π+π−) (s3 is not an independent variable and can be expressed
via s1 ands2 but we use it here for clarity),anr

1 , anr
2 , δ nr

1 andδ nr
2 are free parameters of the fit.

The logarithmic likelihood functionL is then constructed as

L = −2∑ log( fsigS(s1,s2)+(1− fsig)B(s1,s2)), (3.3)

whereS(s1,s2) is the density of signal events|M(s1,s2)|2 convolved with the detector resolution
function, B(s1,s2) describes the combinatorial background that is considered to be constant and
fsig is the fraction of signal events in the data sample. BothS(s1,s2) andB(s1,s2) are efficiency
corrected.

Results of the fits toϒ(5S) → ϒ(nS)π+π− signal events are shown in Fig. 3, where one-
dimensional projections of the data and fits are compared. The combined statistical significance of
the two peaks exceeds 10σ for all tested models and for allϒ(nS)π+π− channels.

To study the resonant substructure of theϒ(5S) → hb(nP)π+π− (m = 1,2) three-body decays
we measure their yield as a function of thehb(1P)π± invariant mass. The decays are reconstructed
inclusively using missing mass of theπ+π− pair,Mmiss(π+π−). We fit theMmiss(π+π−) spectra in
bins ofhb(1P)π± invariant mass, defined as the missing mass of the opposite sign pion,Mmiss(π∓).
We combine theMmiss(π+π−) spectra for the correspondingMmiss(π+) andMmiss(π−) bins and we
use half of the availableMmiss(π) range to avoid double counting.

6
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The fit function is a sum of peaking components due to dipion transitions and combinatorial
background as described Section 2. The positions of all peaking components are fixed to the values
measured from the fit to the overallM(π+π−) spectrum (see Table 1).

Since theϒ(3S) → ϒ(1S) reflection is not well constrained by the fits, we determine its nor-
malization relative to theϒ(5S) → ϒ(2S) signal from the exclusiveµ+µ−π+π− data for every
Mmiss(π) bin. In case of thehb(2P) we use the range ofMmiss(π+π−) < 10.34GeV/c2, to exclude
the region of theK0

S → π+π− reflection. The peaking components include theϒ(5S) → hb(2P)

signal and aϒ(2S) → ϒ(1S) reflection.
The results for the yield ofϒ(5S) → hb(nP)π+π− (m = 1,2) decays as a function of the

Mmiss(π) are shown in Fig. 4. The distribution for thehb(1P) exhibits a clear two-peak structure
without a significant non-resonant contribution. The distribution for thehb(2P) is consistent with
the above picture, though the available phase-space is much smaller. We associate the two peaks
with the production of theZb(10610) and Zb(10650). To fit the Mmiss(π) spectrum we use the
following combination:

|BW1(s,M1,Γ1)+aeiφ BW1(s,M2,Γ2)+beiψ |2 qp√
s
. (3.4)

Here
√

s ≡ Mmiss(π); the variablesMk, Γk (k = 1,2), a, φ , b and ψ are free parameters;qp√
s is

a phase-space factor, wherep (q) is the momentum of the pion originating from theϒ(5S) (Zb)
decay measured in the rest frame of the corresponding mother particle. The P-wave Breit-Wigner

amplitude is expressed asBW1(s,M,Γ) =
√

M ΓF (q/q0)
M2−s−iM Γ . HereF is theP-wave Blatt-Weisskopf form

factor F =
√

1+(q0R)2

1+(qR)2 , q0 is a daughter momentum calculated with pole mass of its mother,R =

1.6GeV−1. The function (Eq. 3.4) is convolved with the detector resolution function, integrated
over the histogram bin and corrected for the reconstruction efficiency.The fit results are shown
as solid histograms in Fig. 4. We find that the non-resonant contribution is consistent with zero in
accord with the expectation that it is suppressed due to heavy quark spin-flip. In case of thehb(2P)

we fix the non-resonant amplitude at zero.

4. Evidence for the ηb(2S) and observation of hb(1,2P) → ηb(1S)γ

We study the processese+e− → ϒ(5S) → hb(nP)π+π−, hb(nP) → ηb(mS)γ. We reconstruct
only the π+, π− and γ. The two-dimensional distributionM(n)

miss(π
+π−γ) ≡ Mmiss(π+π−γ)−

Mmiss(π+π−) + mhb(nP) vs. Mmiss(π+π−) contains a signal cluster at the location of two cross-
ing bands. A band atMmiss(π+π−) = mhb(nP) is due to theπ+π− from theϒ(5S) → hb(nP)π+π−

process and a randomγ; a band atM(n)
miss(π

+π−γ) = mηb(mS) is due to theγ We fit theMmiss(π+π−)

spectra for differentM(n)
miss(π

+π−γ) bins to measure thehb(nP) yield. Thehb(nP) yield peaks at

M(n)
miss(π

+π−γ) values corresponding tomηb(mS) due to thehb(nP) → ηb(mS)γ transitions.
The selection criteria is described in Ref. [11].
We fit theMmiss(π+π−) spectrum in thehb(1P) andhb(2P) regions, defined as 9.8GeV/c2−

10.1GeV/c2 and 10.1GeV/c2−10.4GeV/c2, respectively, with a fit function that is the sum of
peaking components and a combinatorial background [11]. We find event yields for theϒ(5S) →
hb(nP) transitions ofN5S→1P = (70.3±3.3+1.9

−0.7)×103 andN5S→2P = (89.5±6.1+0.0
−5.8)×103.
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For hyperfine splittings
2
∑

J=0

2J+1
9 mχbJ(nP)−mhb(nP), we find∆MHF(1P) = (+0.8±1.1)MeV/c2

and∆MHF(2P) = (+0.5±1.2)MeV/c2, where statistical and systematic uncertainties in mass are
added in quadrature.

We fit the Mmiss(π+π−) spectra for eachM(n)
miss(π

+π−γ) bin. From a generic MC simula-

tion, we find that theK0
S → π+π− contribution is independent of theM(2)

miss(π
+π−γ) value in the

ηb(1S) region; in theηb(2S) region, we restrict theMmiss(π+π−) fit range to 10.10GeV/c2 −
10.34GeV/c2, thereby avoiding the sharp rise in theK0

S → π+π− contribution that occurs at

10.37GeV/c2. The results for thehb(1P) andhb(2P) yields as a function ofM(n)
miss(π

+π−γ) are
presented in Fig. 5. Clear peaks at 9.4GeV/c2 and 10.0GeV/c2 are identified as signals for the
ηb(1S) andηb(2S), respectively. Generic MC simulations indicate that no peaking backgrounds
are expected in these spectra.
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Figure 5: Thehb(1P) yield vs. M(1)
miss(π

+π−γ) (a), andhb(2P) yield vs. M(2)
miss(π

+π−γ) in theηb(1S) region
(b) and in theηb(2S) region (c). The solid (dashed) histogram presents the fit result (background component
of the fit function).

We fit thehb(nP) yield dependence onM(n)
miss(π

+π−γ) to a sum of theηb(nS) signal compo-
nents described by the convolution of a non-relativistic Breit-Wigner function with the resolution
function and a background parameterized by an exponentiation of a first-[second-] order polyno-
mial in theηb(1S) [ηb(2S)] region. The twoM(n)

miss(π
+π−γ) spectra [from thehb(1P) andhb(2P)]

with ηb(1S) signals are fitted simultaneously. We find event yields for thehb(nP) → ηb(mS)

transitions ofN1P→1S = (23.5± 2.0)× 103, N2P→1S = (10.3± 1.3)× 103 andN2P→2S = (25.8±
4.9)× 103; the fitted masses and width aremηb(1S) = (9402.4± 1.5± 1.8)MeV/c2, Γηb(1S) =

(10.8+4.0
−3.7

+4.5
−2.0)MeV andmηb(2S) = (9999.0±3.5+2.8

−1.9)MeV/c2. The confidence level of theηb(1S)

[ηb(2S)] fit is 61% [36%]. If theηb(2S) width is allowed to float in the fit, we findΓηb(2S) =

(4+12
−20)MeV or Γηb(2S) < 24MeV at 90% C.L. using the Feldman-Cousins approach [12]. For mass

and yield measurements, we fix theηb(2S) width at its value from perturbative calculations [13]

Γηb(2S) = Γηb(1S)
Γϒ(2S)

ee

Γϒ(1S)
ee

= (4.9+2.7
−1.9)MeV, where the uncertainty is due to the experimental uncer-

tainty in Γηb(1S).

To estimate the systematic uncertainties in theηb(nS) parameters, we vary the polynomial
orders and fit intervals in theMmiss(π+π−) & M(n)

miss(π
+π−γ) fits, and theM(n)

miss(π
+π−γ) binning

by scanning the starting point of the 10MeV/c2 bin with 1MeV/c2 steps. We also multiply the

8
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non-relativistic Breit-Wigner function by anE3
γ term expected for an electric dipole transition and

include the uncertainty in thehb(1P) andhb(2P) masses and in the estimated value of theηb(2S)

width. We add the various contributions in quadrature to estimate the total systematic uncertainty.
For the hyperfine splittingsmϒ(nS) −mηb(nS) we determine∆MHF(1S) = (57.9±2.3)MeV/c2 and
∆MHF(2S) = (24.3+4.0

−4.5)MeV/c2, where statistical and systematic uncertainties in mass are added
in quadrature.

Using Wilks’ theorem, we find 15σ [9σ ] for the hb(1P) → ηb(1S)γ [hb(2P) → ηb(1S)γ]
statistical significance. For the significance of theηb(2S) signal, we use a method [15] that requires
definition of the search window to take into account the “look elsewhere effect.” For the ratio
r = ∆MHF(2S)

∆MHF(1S) , perturbative calculations [14] predict
m2

ϒ(2S)

m2
ϒ(1S)

Γϒ(2S)
ee

Γϒ(1S)
ee

= 0.513± 0.011 (where the error

is due to the uncertainties inΓee); this is consistent with the measured value of 0.420+0.071
−0.079. To

determine boundaries of the search window, we conservatively assumer = 0 andr = 1. We find
the significance of theηb(2S) signal to be 4.8σ (4.2σ including systematics).

We measureB[hb(1P) → ηb(1S)γ] = (49.2± 5.7+5.6
−3.3)%, B[hb(2P) → ηb(1S)γ] = (22.3±

3.8+3.1
−3.3)% andB[hb(2P) → ηb(2S)γ] = (47.5±10.5+6.8

−7.7)%.

5. Conclusion

In summary, we have observed theP-wave spin-singlet bottomonium stateshb(1P) andhb(2P)

in the reactione+e− → ϒ(5S) → hb(nP)π+π−. The measured hyperfine splittings are consistent
with zero as expected. A detailed analysis revealed thathb(nP) states inϒ(5S) decays are domi-
nantly produced via intermediate charged bottomonium-like resonancesZb(10610) andZb(10650).
ResonancesZb(10610) andZb(10650) have also been observed in decaysϒ(5S) → ϒ(nS)π+π−.
Weighted averages over all five channels giveM = 10607.2± 2.0MeV/c2, Γ = 18.4± 2.4MeV
for theZb(10610) andM = 10652.2±1.5MeV/c2, Γ = 11.5±2.2MeV for theZb(10650), where
statistical and systematic errors are added in quadrature. TheZb(10610) production rate is similar
to that of theZb(10650) for each of the five decay channels. Their relative phase is consistentwith
zero for the final states with theϒ(nS) and consistent with 180 degrees for the final states with
hb(nP). Analysis of charged pion angular distributions [8] favor theJP = 1+ spin-parity assign-
ment for both theZb(10610) andZb(10650). Since theϒ(5S) has negativeG-parity, theZb states
have positiveG-parity due to the emission of the pion.

We report the first evidence for theηb(2S) using thehb(2P) → ηb(2S)γ transition, with a
significance, including systematics, of 4.2σ , and the first observation of thehb(1P) → ηb(1S)γ
andhb(2P) → ηb(1S)γ transitions. The mass and width parameters of theηb(1S) andηb(2S) are
measured to bemηb(1S) = (9402.4±1.5±1.8)MeV/c2, mηb(2S) = (9999.0±3.5+2.8

−1.9)MeV/c2 and
Γηb(1S) = (10.8+4.0

−3.7
+4.5
−2.0)MeV. The mηb(2S) andΓηb(1S) are first measurements; themηb(1S) mea-

surement is the most precise and is about 10MeV/c2 higher than the current world average [7].
The hyperfine splittings,∆MHF(1S) = (57.9±2.3)MeV/c2 and∆MHF(2S) = (24.3+4.0

−4.5)MeV/c2,
are in agreement with theoretical calculations [14]. We measure branchingfractions for the tran-
sitionsB[hb(1P) → ηb(1S)γ] = (49.2± 5.7+5.6

−3.3)%, B[hb(2P) → ηb(1S)γ] = (22.3± 3.8+3.1
−3.3)%

andB[hb(2P) → ηb(2S)γ] = (47.5± 10.5+6.8
−7.7)% that are somewhat higher than theoretical ex-

pectations [1]. We update thehb(1P) andhb(2P) mass measurementsmhb(1P) = (9899.1±0.4±

9
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1.0)MeV/c2, mhb(2P) = (10259.8±0.5±1.1)MeV/c2, and 1P and 2P hyperfine splittings∆MHF(1P)=

(+0.8±1.1)MeV/c2, ∆MHF(2P) = (+0.5±1.2)MeV/c2.
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