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1. Early times

In early-mid nineties, the unified model of active galactic nuclei (AGN) reached a reliable
shape as the result of the efforts of many researchers (e.g. [50, 6, 5, 81]). Narrow-Line Seyfert 1
Galaxies (NLS1), recognized as a peculiar class of AGN in thesecond half of eighties ([68, 42], but
see also [35]), were initially not included in the unified model. In the Table 1 of Urry & Padovani
[81] NLS1s are not present, but would have been likely to be placed in the radio-quiet branch,
under the column Type 0 or between Type 1 and Type 0. Later works included NLS1s and placed
them in a region of radio-quiet sources characterized by lowmass of the central black hole, high
accretion luminosity, and hosted by spiral galaxies (e.g. [11], Fig. 7).

However, also a population of radio-loud NLS1s (RLNLS1s) emerged slowly, one at a time.
The first RLNLS1 – PKS 0558−504 (z = 0.137) – was discovered in 1986 by Remillard et al.
[76] during the identification of eight sources detected byHEAO 1. It was not yet recognized
as NLS1 (the seminal paper by Osterbrock & Pogge [68] was published just the previous year),
but they wrote: “One of the I Zw 1 types, the previously unidentified radio source PKS 0558-
504, is a QSO with unusually narrow hydrogen lines for a high-luminosity object (Mv = −25.1).”
Later, again Remillard et al. [77], reported strong and rapidly variable X-ray emission (+67% in 3
minutes) from the same source detected byGinga. The measured energies and time scales required
relativistic beaming to be reasonably explained. A second candidate – RGB J0044+193 (z= 0.181)
– was found in 1999 while searching for X-ray selected BL Lac Objects in theROSAT-Green Bank
survey (RGB, [78]), but it was later suggested that the radiodetection could be spurious, thus
restoring the radio-quiet classification [57]. More RLNLS1s were discovered in these years. Grupe
et al. [44] in 2000 reported about RX J0134.2−4258 (z= 0.237): ROSATobservations indicated
spectral variability (fainter when softer), with a variable hard component, confirmed also byASCA.
They proposed three possible explanations: warm absorber,corona, or relativistic jet. The third
case followed soon: PKS 2004−447 (z = 0.24) was discovered by Oshlack et al. [67] (see also
[34]). About one dozen of RLNLS1s were found in a survey done by Zhou & Wang [84].

The advent of theSloan Digital Sky Survey(SDSS) in early 2000s determined a major change
in this research field. The public availability of thousandsof optical spectra allowed the cross-
correlation with radio catalogues to search for more candidates. Particularly, it is worth mentioning
H. Y. Zhou, who gave many important contributions by discovering, with his colleagues, several
RLNLS1s [85 – 87, 83]. Specifically, they reported about the radio properties of three sources –
SDSS J094857.3+002225 (z = 0.585) [85], SDSS J084957.97+510829.0 (z = 0.584) [86], and
1H 0323+342 (z= 0.061) [87] – that were very similar to blazars (flat or invertedradio spectrum,
high brightness temperature), suggesting the presence of arelativistic jet viewed at small angles.
Interestingly, all these three sources were later detectedat high-energyγ rays [4]. These works
triggered deeper studies at radio frequencies of some RLNLS1s [16, 17], where the typical radio
properties of relativistic jets were confirmed, and, in addition, the radio morphology resulted to be
very compact on parsec scale.

A first attempt to search for emission at TeV energies from RLNLS1s was done by Falcone et
al. [22] in 2004 by using the ground-basedWhippletelescope. However, the aim of that study was
to detect atγ rays some candidates of the elusive population of high-frequency peaked flat-spectrum
radio quasars (HFSRQs) postulated by Padovani et al. [69, 70] to challenge the so-called “blazar
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sequence” [33, 36]. According to the latter, blazars followa sequence linking the frequency of the
synchrotron peak to the jet power: the greater the power, thelower the synchrotron peak frequency,
and vice versa. Therefore, to find a high-power blazar with a high synchrotron peak frequency (in
the UV/X-rays) would have been a major break in the sequence.Among the candidates in the list
of Falcone there were two RLNLS1s – 1H 0323+342 and SDSS J162901.30+400759.9 – but not
recognized as such. It was likely a misinterpretation of thestrong soft X-ray emission of NLS1s,
due to the accretion disk, which instead was considered as anindication of a synchrotron peak
at X-rays1. Anyway, the search of TeV emission was negative, but intriguing. In the words by
Falcone et al. [22]:“No significant emission has been detected from any of the candidate sources
in this initial survey. There was marginal evidence of a rateincrease observed in the B2 0321+33
[alias 1H 0323+342] light curve, but the statistical significance of this increase is2.5σ (post-trial
significance), which could be accounted for by a statisticalfluctuation”.

In mid-2000s, two more surveys were done by Whalen et al. [82]and Komossa et al. [52], who
did also a specific paper on one source of her list [53]. The former survey was done by using the
FIRST Bright Quasar Survey(FBQS) and the authors conclude that“except for their radio prop-
erties, radio-selected NLS1 galaxies do not exhibit significant differences from traditional NLS1
galaxies. Our results are also in agreement with previous studies suggesting that NLS1 galaxies
have small black hole masses that are accreting very close tothe Eddington rate”[82]. Instead,
Komossa et al. studied a more heterogeneous and small sampleand concluded that“while proper-
ties of most sources (with two to three exceptions) generally do not favor relativistic beaming, the
combination of accretion mode and spin may explain the observations” [52]. In 2008, there was the
SDSS sample of 23 RLNLS1s by Yuan et al. [83]:“Intrinsically, some of them have relatively low
radio power and would have been classified as radio-intermediate AGNs. The black hole masses
are estimated to be within106−108M⊙, and the Eddington ratios close to unity, as in normal NLS1
AGNs. The results imply that radio-loud AGNs may be powered by black holes of moderate masses
(∼ 106−107M⊙) accreting at high rates”.

On the basis of the radio morphology and spectra, Komossa et al. [52] also suggested that
some RLNLS1s of their sample could be similar to Compact Steep Spectrum (CSS) radio sources.
Gallo et al. [34] found that one clear example of RLNLS1/CSS was PKS 2004−447. Although
Komossa et al. [52] cited this source, they did not include intheir sample on the basis of a weak
FeII bump, which in turn would suggest a classification of this AGN as narrow-line radio galaxy or
type II AGN. However, Gallo et al. [34] noted that there is no formal threshold for the intensity of
Fe II, thus holding the classification as RLNLS1.

Meanwhile, another important player introduced itself in this game: theSwiftsatellite, launched
on November 2004. Again, the policy of use played an important role. The possibility for almost
everyone to have even a little snapshot and the immediate public availability of data, made it pos-
sible to perform many researches outside the mainstream, asit was the case of RLNLS1s. In the
second half of 2000s, theSwift public archive was sufficiently rich of observations on RLNLS1
to perform an early little survey [29]. Some interesting results were found, specifically about
1H 0323+342 (Fig. 1, left panel): the source had a strong optical-to-X-ray emission from the

1The HFSRQs were at last found in 2012 by Padovani et al. [71]. See, however, a different interpretation by
Ghisellini et al. [37] and Foschini [28].

3



P
o
S
(
S
e
y
f
e
r
t
 
2
0
1
2
)
0
1
0

Powerful relativistic jets in narrow-line Seyfert 1 galaxies (review) Luigi Foschini

Blue: low state 
Red: high state (jet) 

!
2
 ! 1.4"

!
1
 ! 2.2"

! ! 2.0"

E
break 
! 3 keV"

Accretion disk 1H 0323+342 
(z=0.061) 

2009 April 1 

2009 May 5 

2009 May 15 

PMN J0948+0022 
(z=0.585) 

Spectral changes  
in Swift/UVOT 

! 
synchrotron 

Accretion disk 

Blue: low state (May 15) 
Red: high state (May 5) 

Figure 1: (left panel) Swift (XRT and UVOT) observations of the RLNLS1 1H 0323+342 in two different
states. When the jet is not active (blue points, ObsID 00036533007, 21 Dec 2007), the source displays low
optical-to-X-ray flux, with a rather flat X-ray photon index.As the jet increases its activity (red points,
ObsID 00035372001, 6 Jul 2006), there is a greater optical-to-X-ray flux and the emergence of a hard tail
(Γ ∼ 1.4). See also [29]. (right panel) Swift(XRT and UVOT) andFermi/LAT observations of the RLNLS1
PMN J0948+0022 in two different states during the 2009 MW campaign [3].The source was active during
2009 April, with a peak on the day 1. Then, in early May, the activity dropped at all the wavelengths in a
coordinated way. See [3] and the text for more details.

accretion disk, but sometimes the jet emerged, resulting inthe appearance of a hard tail. This
behaviour was confirmed also by the spectral variability at hard X-rays. The source was ob-
served byINTEGRALin 2004 with a low flux and soft spectrum (F20−40 keV = 2.5± 0.5 mCrab;
F40−100 keV < 2.6 mCrab), while the integration of theSwift/BAT on axis data between 2006-
2008 (exposure∼ 53 ks) resulted in a high flux and hard spectrum (F20−40 keV < 20 mCrab;
F40−100 keV= 16±2 mCrab) [29].

Also the hard X-ray detection was affected by a misinterpretation. Indeed, 1H 0323+342
was already present in a few papers on hard X-ray sources published in 2007, before of [29]:
two independent catalogs of the IBIS imager onboard theINTEGRALsatellite [7, 54] and one
optical-to-X-ray follow-up withSwift of a sample of 34 hard X-ray AGN [58]. However, in all
these papers, 1H 0323+342 was not recognized as RLNLS1, but classified as a normal Seyfert 1.
In a subsequent paper reporting the“first high-energy observations of narrow-line Seyfert 1s”–
where “high-energy” here means in the range 17-100 keV – Malizia et al. [59] studied two-three
candidate radio-quiet NLS1s discovered byINTEGRALandSwift/BAT, and with no reference to
any rethinking about 1H 0323+342. The latter was included in theINTEGRALsample only in
2011 by Panessa et al. [73].

2. The Fermi breakthrough

A real change in the perception of RLNLS1s came in 2008 with the launch of theFermi
Gamma-ray Space Telescope(hereafterFermi), but also in this case the emerging of RLNLS1s
as a new class ofγ-ray emitting AGN was not straightforward. Indeed, the firstRLNLS1 to be
detected at MeV-GeV energies – SDSS J094857.3+002225 (alias PMN J0948+0022) [2] – was
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also present among the list of bright sources detected afterthe first three months ofFermi activity
[1]. However, it was still identified as a FSRQ, although the text refers to another specific paper in
preparation:“The source PMN J0948+0022, associated with 0FGL J0948.3+0019, has a flat radio
spectrum but shows an optical spectrum with only narrow emission lines, leading to an ‘uncertain’
type classification in Roma-BZCat. A detailed analysis of this source is presented in Abdo et al.
(2009a)” [the latter being the reference [2] in the present work]. It was indeed in [2] that it was
reported the first high-energyγ-ray detection of a RLNLS1 in an explicit and “conscious” way.
The discovery was soon followed by a complementary paper containing additional information to
improve the identification [30].

Obviously, these early works linked theγ-ray source with the RLNLS1 on a statistical basis.
Therefore, a multiwavelength (MW) campaign was activated to study in detail the electromagnetic
emission of PMN J0948+0022 from radio toγ rays [3]. We had sufficient luck to catch coordinated
variability at different frequencies. PMN J0948+0022 displayed a moderateγ-ray activity on 2009
April, with fluxes of the order of a few×10−7 ph cm−2 s−1 (0.1 < E < 100 GeV). In early May
there was a drop of theγ-ray flux followed by a decrease of the optical-to-X-ray flux as measured
by Swift, together with a spectral change in the optical/UV spectrum(Fig. 1,right panel). This was
interpreted as a decrease of the jet emission (synchrotron), which left the optical/UV wave band
dominated by the thermal emission from the accretion disk. This point of view was confirmed by
the fact that a few weeks later, there was the peak of the radioemission as recorded from OVRO,
Metsähovi, and Effelsberg ground-based radio telescopes [3], as expected from the classical theory
of relativistic jets [10]. Indeed, the blob of plasma has to be compact to be optically thin toγ rays,
but in this case the lower part of the electromagnetic spectrum (radio frequencies) is self-absorbed.
As the blob moves outward, it expands itself, thus becoming optically thick to γ rays, but thin
to radio emission. Moreover, additional support to this interpretation came from the detection
of optical (V) polarization at∼ 19% from the Kanata telescope between the end of March and
the beginning of April 2009, when the source was moderately active at γ rays [47]. All these
information concurred to establish a well-grounded association of theFermi detectedγ-ray source
with the RLNLS1 PMN J0948+0022. Other MW campaigns strengthened the association and the
similarities of the jet with those of blazars [31, 32]. Otheroptical-infrared observations confirmed
violent intranight variability, as expected from AGN with relativistic jets viewed at small angles
[56, 49, 72].

After one year ofFermi operations, the number ofγ-ray detected RLNLS1s increased to four
[30], with the addition of 1H 0323+342 (cf [87, 29, 73]), PKS 2004−447 (cf [67, 34, 29]), and
PKS 1502+036 (cf [83]). RLNLS1s were then explicitly indicated“as a new class of gamma-
ray active galactic nuclei”, in addition to blazars and radio galaxies [30]. One more RLNLS1,
SBS 0846+513 (cf. [86]) was later detected because of an outburst ([23, 20, 14]), indicating that
the probability of detection atγ rays is still biased by the sensitivity of the instrument. The above
cited sources have all been detected atγ rays with high significance (TS> 25, see [62] for the
definition of TS, or& 5σ ). However, it is worth noting that there are also several detections at low
significance (9< TS< 25 or 3< σ < 5), so that there is presently one dozen of RLNLS1s detected
at MeV-GeV energies [23] (2). The number is expected to increase, depending on the activity of

2See the updated list at the web pagehttp://tinyurl.com/gnls1s
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the sources. The ability ofFermi to scan all the sky every three hours guarantees a continuous
monitoring.

3. The parent population

One dozen of RLNLS1s with the jet viewed at small angles (five,in the most conservative
hypothesis) implies∼ 2Γ2 times parent sources, i.e. with the jet viewed at large angles. Γ, the bulk
Lorentz factor of the jet, is generally∼ 10, which in turn means at least∼ 103 parent sources. The
problems is that it is quite difficult to find them.

0.001 0.0045 0.011 0.025 0.053 0.11 0.22 0.44 0.88 1.7 3.5

Figure 2: Cygnus A as observed by the Very Large Array (VLA) at 6 cm [74].Personal elaboration of the
original FITS file. See text for details.

Basically, there are three hypotheses:

1. The first one – rather obvious – is to search simply for RLNLS1s with jet viewed at large
angles. This could be not so easy, because early studies indicated a very compact structure
for beamed NLS1s [16, 17, 45, 40]. Nevertheless, some interesting cases are emerging, like
PKS 0558−504, where Gliozzi et al. [41] found a bipolar radio jet 46 kpc-long (projected)
likely viewed at 30◦−45◦. Three more candidates have been found by Doi et al. [18].

2. The second hypothesis is based on the fact that RLNLS1s areextremely compact at radio
frequencies. If there is no extended emission, then it is possible that these sources are radio
quiet when observed at large angles. To better understand this hypothesis, have a look at one
well-known radio image of the radio galaxy Cygnus A (Fig. 2).Most of the radio emission
comes from the hot spots and the core, while the jet is almost invisible, an indication of its
high efficiency. Now think to a similar source, but without the hot spots. NLS1s are thought
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to be young AGN – cf [43, 60, 61, 52] – and therefore one could expect that the spots have
not yet developed. Roughly, the source is now limited to whatis inside the dashed ellipse
in Fig. 2. The source observed pole-on has a compact morphology with a high brightness
temperature core. When it is observed edge-on, the radio emission - no more enhanced by the
special relativity effects - becomes much fainter and such asource might seem radio quiet.
In this case, the parent population could be that of the radio-quiet NLS1s. Radio quiet, but
not radio silent, as proved by [80]. Indeed, some jet-like radio structures have been found
also in radio-quiet NLS1s [39, 66, 19].

3. The third and last option is based on the hypothesis that the broad-line region has a disk-like
shape [15]. This means that when the source is observed pole-on, there is no component of
motion directed toward the observer and, hence, no Doppler broadening. When observed
edge-on, the Doppler broadening is present and therefore the line profile is broad. Therefore,
in this case, it is necessary to search among the usual radio galaxies, but hosted by disk/spiral
galaxies, as NLS1s generally have that type of host3. Some examples have been found, e.g.
[12, 21, 63, 75, 51, 66, 65]. It is worth noting that a systematic study on the morphology of
the host galaxy of a flux-limited sample of radio galaxies (2 Jy) resulted in the evidence that
12% of the sources are hosted by disk galaxies [48].

The parent population presently remains an open question. It is not yet clear if one of the
above three will win or if it will result a mixture including abit of all the three or, even, in a
yet-to-be-made fourth hypothesis.

4. The role of RLNLS1s in the unification of jets at all scales

The discovery of powerful relativistic jets in RLNLS1s is not “simply” the addition of one
more class ofγ-ray AGN. It has deep implications in the unification of jets at all scales. RLNLS1s
are different from blazars in many aspects, but the jets seemto be almost the same, as proved by
the MW campaigns [3, 31, 32]. Indeed, some researchers (e.g.[14]) suggested that RLNLS1s
might be blazars in a early stage of their life. While there isagreement on the physical properties
of the jets in blazars and RLNLS1s, to name all these sources simply as blazars could be strongly
misleading. The reason supporting the inclusion of RLNLS1 in the blazar name is that some
researchers refer the term simply to the jet emission boosted by the special relativity (somehow
derived from the verb “to blaze”), disregarding any information on the AGN, environment, and
host. Ulrich et al. [79] wrote:“In radio-loud AGN seen at small angles to the axis of the jet,the
highly nonthermal radiation produced in the jet is stronglyamplified by relativistic beaming and
dominates the observed continuum. In these sources, calledblazars, variability is the most violent
and affects the whole electromagnetic range from the radio to the gamma-ray band.”. Burbidge
& Hewitt [13] wrote that“at the dinner at the end of that meeting[the well-known Pittsburgh
conference on BL Lac Objects held in 1978], Spiegel coined the term ‘blazar’ a pictorial term
which he proposed be applied to rapidly variable objects some of which, but not all, can also be
classified as BL Lac objects.”The problem is not the term itself: since it is now evident that the

3Blazars and radio galaxies are instead hosted by ellipticalgalaxies.
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powerful jets in RLNLS1s are the same of blazars, it might be useful to speak about all these
sources dominated by the jet emission as blazars, given the above cited definitions (4).

The problem is that historically blazars refer to BL Lac Objects and FSRQs. According to
Wikipedia, the Spiegel’s term was the result of the contraction of the words BL Lac objects and
Optically Violent Variable (OVV) quasars(5). However, BL Lac Objects and FSRQs are AGN dif-
ferent from RLNLS1s in several ways. Therefore, the simple inclusion of RLNLS1s in the blazar
semantic field results in missing some important new information specifically linked to these pecu-
liar sources, which can be particularly useful for the unification of jets at all scales. For example,
one is the confirmation of what already told Roger Blandford at the Pittburgh 1978 conference on
BL Lac Objects:“As the continuum[jet] emission is proposed to originate in the central 10 pc, I
don’t think the nature of the surrounding object is particularly relevant to the model”[9]. The fact
that powerful relativistic jets develop also in the environment of RLNLS1s, which is different from
that of blazars, is one more arrow for the Blandford’s bow. Another important information is the
break down of the mass requirement of the central accreting object to develop a jet in AGN (e.g.
[55]): since the masses of the central black hole of RLNLS1s are smaller than those of blazars, this
requirement is no more valid, making thus possible to perform the unification (such mass require-
ment was not present on Galactic scale).

Another change in the common knowledge is required to unify efficiently the jets at all scales
and refers to the analogy with compact objects on Galactic scale. Traditionally, NLS1s have been
considered as the large scale version of stellar mass black holes in soft/high state, because of the
high-accretion rate (e.g. [41]). However, what it matters is the mass not the accretion: when
displaying the jet power as a function either of the mass of the central compact object or the
disk luminosity, two branches resulted (see Fig. 3 in [24]).One dependent on the mass (RPD,
radiation-pressure dominated regime) and the other dependent on the accretion (GPD, gas-pressure
dominated regime), which in turn are in agreement with the expectations from the theory of jets
[8, 64, 38]. RLNLS1s are placed in the RPD branch. Another wayto see this effect is displayed in
Fig. 2 of [26]: it is evident that the RLNLS1s (low-mass AGN) make a branch similar to that of neu-
tron stars on Galactic scale (low-mass binaries). It is alsoworth stressing that without powerful jets
in RLNLS1s, the low-mass AGN branch would be missing, thus making impossible a unification
of jets at all scales, despite the interesting attempts madein the past. Instead, now with RLNLS1,
one can rescale the jet power according to the mass of the compact object (M1.4 according to [46]),
making it possible to merge the Galactic and extragalactic jets [25, 26]. It remains to understand
a slight dependence on the disk luminosity (cf. [25]), whichin turn depends on our understanding
of the disk structure and its efficiency in the conversion of the gravitational potential energy into
radiation.

Another open question is the role of the spin of the compact object, although rather than the
spin alone, it is necessary to study also how to measure the angular speed of the magnetic field
lines (cf. [8]). As it will be possible to measure both angular velocities, perhaps it will be possible
to understand the division between AGN with or without relativistic jets (e.g. [27]).

4I myself coauthored in 2009 a paper titled:“Blazar nuclei in radio-loud narrow-line Seyfert 1?”[29].
5http://en.wikipedia.org/wiki/Blazar
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5. Conclusions

The class of RLNLS1 is an important piece in our understanding of relativistic jets at all
scales. Although each work has given an important contribution to the present mosaic, the real
breakthrough occurred in 2008 with the detection of high-energy γ rays withFermi/LAT and the
subsequent MW campaigns. This definitely proved the presence of powerful relativistic jets in this
type of AGN and allowed to set an important step toward the unification of relativistic jets.
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