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1. Introduction

It is expected that strongly interacting matter undergoes a transition in some temperature in-
terval from hadron gas to deconfined state also called the quark gluon plasma (QGP) [1]. Creating
and exploring deconfined medium in the laboratory is the goal of the large experimental heavy ion
program at RHIC [2] and LHC [3]. Studying hot and dense strongly interacting matter is also the
subject of a large effort in lattice QCD (see Refs. [4, 5] for recent reviews). Early lattice QCD
simulations at non-zero temperature were limited to large quark masses and hadno control over
the discretization errors [6, 7, 8]. During the past seven years calculations with the physical strange
quark mass and physical or nearly physical light (u,d) quark masses have been performed using
improved staggered fermion actions [9, 10, 11, 12, 13, 14, 15, 16, 17,18, 19], and for several quan-
tities continuum extrapolated results have been obtained. There was also progress in lattice QCD
calculations at non-zero temperature using other fermion formulations, namely Wilson fermions
[20, 21, 22], Domain-Wall fermions [23] and overlap fermions [24]. The later two formulations
preserve the chiral symmetry of continuum QCD. However, due to much larger computational costs
of these formulations the corresponding results are far less extensive.

To get reliable predictions from lattice QCD the lattice spacinga should be sufficiently small
relative to the typical QCD scale, i.e.ΛQCDa ≪ 1. For staggered fermions, discretization errors
go likeO((aΛQCD)2) but discretization errors due to flavor symmetry breaking turn out to be quite
large numerically, and dominate the cutoff dependence of thermodynamic quantities at low tem-
peratures. To reduce these errors one has to use improved staggeredfermion actions with so-called
fat links [25]. At high temperature the dominant discretization errors come from the lattice distor-
tions of the quark dispersion relation and go like(aT)2, and therefore could be very large. Thus,
it is important to use improved discretization schemes, which reduce or eliminate these discretiza-
tion errors. Staggered fermion actions used in numerical calculations typically implement some
version of fat links as well as improvement of quark dispersion relation and are referred to asp4,
asqtad, HISQandstout. Independently of specific improvement all lattice results eventually must
be extrapolated to the continuum limit.

In this contribution I am going to discuss lattice QCD calculations on the equation of state,
study of deconfinement aspects of the QCD transition, including color screening and fluctuations
of conserved charges and determination of the chiral transition temperature. I will mostly discuss
lattice results obtained with staggered quark formulation; where appropriateresults obtained using
other actions will be highlighted.

2. Equation of State

The equation of state has been calculated using different improved staggered fermion actions
p4, asqtad, stout andHISQ. In the lattice calculations of the equation of state and many other
quantities the temperature is varied by varying the lattice spacing at fixed valueof the temporal
extentNτ . The temperatureT is given by the lattice spacing and the temporal extent,T = 1/(Nτa).
Therefore taking the continuum limit corresponds toNτ → ∞ at the fixed physical volume. The
calculation of thermodynamic observables proceeds through the calculationof the trace of the
energy momentum tensor,ε − 3p, also known as the trace anomaly or the interaction measure.
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This is due to the fact that this quantity can be expressed in terms of expectation values of local
gluonic and fermionic operators, (see e.g. Ref. [15]). Different thermodynamic observables can be
obtained through integration of the trace anomaly1. The pressure can be written as

p(T)

T4 −
p(T0)

T4
0

=
∫ T

T0

dT′

T ′5 (ε −3p). (2.1)

The lower integration limitT0 is chosen such that the pressure is exponentially small there. Fur-
thermore, the entropy density can be written ass = (ε + p)/T. Since the interaction measure is
the basic thermodynamic observable in the lattice calculations it is worth to discussits properties
more in detail. In Fig. 1 (left panel) I show the results of the calculation with different improved
actions. The calculation withp4 andasqtadactions have been performed onNτ = 8 lattices and
light quark massesml = ms/10, with ms being the physical strange quark mass [13, 15]. These
light quark masses correspond to the pion masses slightly above 200 MeV in the continuum limit.
For this value ofNτ the above deviation from the physical quark mass plays little role [14, 26]. The
Nτ = 12 asqtad calculations have been performed forml = ms/20 [27]. Calculations withHISQ
action have been performed forNτ = 4, 6, 8, 10 and 12 forml = ms/20 corresponding to the pion
mass of 160 MeV in the continuum limit [27]. A subset of these results is shownin Fig. 1. Finally,
calculation of the trace anomaly and the equation of state was performed withstout action using
Nτ = 4, 6, 8, 10 and 12 and physical light quark masses [18]. Using the lattice data fromNτ = 6, 8
and 10 a continuum estimate for different quantities was given [18]. The interaction measure shows
a rapid rise in the transition region and after reaching a peak at temperatures of about 200 MeV
decreases. At low temperatures lattice data obtained withHISQaction and stout action agree with
each other. We also compare the lattice results with hadron resonance gas (HRG) model calcu-
lations which seems to agree well withHISQ andstout results forT < 150 MeV. Cutoff effects
(i.e. Nτ dependence) appears to be the strongest around the peak region. They decrease at high
temperatures and atT > 400 MeV all lattice results agree with each other. At low temperature the
cutoff effects related to flavor symmetry breaking are very large forp4 andasqtadactions. Due
to these large cutoff effects theNτ = 8 p4 andasqtaddata are below the hadron resonance gas
model. Taking into account the distortions of the hadron spectrum due to flavor symmetry breaking
in hadron resonance gas calculations leads to good agreement of HRG model with the lattice [28].
Since at high temperatures the effects of flavor symmetry breaking in the pressure and the interac-
tion measure are small, the reduction inε −3p at low temperatures must be compensated (at least
partly) by a larger value at intermediate temperatures. Thus, the largeNτ dependence of the peak
height ofε −3p is related to the large flavor symmetry breaking effects forp4 andasqtadactions.

In Fig. 1 I also show the entropy density divided by the corresponding ideal gas value and
compare the lattice results with the resummed perturbative calculations [29, 30], as well as with
the predictions from AdS/CFT correspondence for the strongly coupledregime [31]. The later
is considerably below the lattice results. Note that the pressure, the energydensity and the trace
anomaly have also been recently discussed in the framework of resummed perturbative calculations
which seem to agree with lattice data quite well at high temperatures[32]. The differences between
thestoutaction and thep4 andasqtadactions for the trace anomaly translates into the differences

1A somewhat different approach was used in Ref. [18]
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Figure 1: The interaction measure (left) and the entropy density (right) as function of the temperature
calculated with improved staggered fermion actions. The dashed line in the left panel shows the HRG result.
The band in the right panel shows the resummed perturbative result, while the solid line is the expectations
based on the strongly coupled limit.

in the pressure and the entropy density. In the high temperature region the entropy density obtained
with stout action is 10% smaller than the entropy density obtained withp4 andasqtadactions.

3. Taylor expansion of the pressure and fluctuations of conserved charges

Due to the infamous sign problem lattice QCD Monte-Carlo simulations are not possible at
non-zero quark chemical potentials. The pressure and other quantities at non-zero chemical po-
tentials, however, can be evaluated using Taylor expansion. The Taylorexpansion can be set up
in terms of the quark chemical potentialsµu, µd and µs, or in terms of the chemical potentials
corresponding to baryon numberB, electric chargeQ and strangenessSof hadrons

p
T4 =

1
VT3 lnZ(T,µu,µd,µs) = ∑

i jk

1
i! j!k!

χuds
i jk

(µu

T

)i (µd

T

) j (µs

T

)k

χuds
i jk =

∂ i+ j+kp/T4

∂ (µu/T)i∂ (µd/T) j∂ (µs/T)k (3.1)

p
T4 =

1
VT3 lnZ(T,µB,µQ,µS) = ∑

i jk

1
i! j!k!

χBQS
i jk

(µB

T

)i (µQ

T

) j (µS

T

)k

χBQS
i jk =

∂ i+ j+kp/T4

∂ (µB/T)i∂ (µQ/T) j∂ (µS/T)k . (3.2)

Using Taylor expansion method the equation of state has been calculated forsmall chemical po-
tential in the continuum limit [33]. Earlier results at non-zero lattice spacing have been reported in
Refs. [34, 35]. While Taylor expansion can be used to study the physicsat non-zero baryon den-
sity, the expansion coefficients are interesting on their own right as they are related to fluctuations
and correlations of conserved charges. As will become clear later fluctuations and correlations of
conserved charges are good probes of deconfinement. Fluctuations of conserved charges are also
useful for determining the freeze-out conditions in heavy ion experiments[36].

4
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Figure 2: The fluctuations of baryon number (left), electric charge (middle) and strangeness (right) as
function of the temperature calculated withHISQand stout action in the continuum limit and normalized by
the corresponding ideal quark gas valuesχX,SB

2 . The solid black curves correspond to HRG predictions.

The diagonal expansion coefficients are related to second and higher order fluctuations of
conserved charges, e.g.

χX
2 =

1
VT3〈N

2
X〉

χX
4 =

1
VT3

(

〈N4
X〉−3〈N2

X〉
2) , (3.3)

while the off-diagonal expansion coefficients are related to correlationsamong conserved charges,
e.g.

χXY
11 =

1
VT3〈NXNY〉. (3.4)

Second order fluctuations have been studied with improved staggered actions in Refs. [15, 17, 37].
Recently continuum results have been obtained for second order fluctuations of baryon number,
electric charge and strangeness usingstout andHISQ actions [38, 39] which are shown in Fig.
2. The lattice results are also compared with HRG model. As one can see from the figure at low
temperatures the lattice data are described well by HRG model indicating that thedominant degrees
of freedom in that temperature range are hadronic. Deconfiniment is seen as a rapid increase of the
fluctuations forT > 150 MeV, which eventually reach values that are close to the expectations of
weakly interacting quark gas. In other words, the fluctuations indicate quark degrees of freedom
at high temperatures. The lattice results obtained withHISQ and stout action agree well in the
continuum limit, except for temperatures around 200 MeV where some discrepancies are observed
in the baryon and electric charge fluctuations. Another way to study deconfinement is to consider
correlations of conserved charges. These correlations are very different for hadron gas and quark
gas. As an example let us examine the strangeness-baryon number correlation. It is convenient
to normalize this quantity as followsCBS = −3χBS

11/χS. At high temperatures where strangeness
is carried by s-quarks this quantity should be close to one. At low temperatures on the other
hand strange baryons are responsible for strangeness-baryon correlations. In Fig. 3(left) I show
continuum results forCBS obtained withstout [38] andHISQ [39] actions. At low temperatures
the lattice results are described by HRG model, while at high temperatures they are close to one as
expected for quark gas.

Fourth order fluctuations for baryon number, electric charges and strangeness have been stud-
ied usingp4 [37] andHISQ [40] actions. Cutoff effects are quite large forp4 action in the low

5
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Figure 3: Baryon number-strangeness correlationCBS (left) and fourth order fluctuations of baryon number
and electric charge forHISQ action normalized by the corresponding ideal quark gas value as function
of T/Tc (right). The lines correspond to the prediction of the hadron resonance gas model. Open (filled)
diamonds in the right panel correspond toNτ = 4 p4 results forχQ

4 (χB
4 ).

temperature and the transition regions. These large cutoff effects also result in much larger value
of the transition temperature than obtained withstoutandHISQactions [10]. Calculations of the
fourth and higher order fluctuations are quite demanding computationally andfor this reason no
continuum results have been obtained yet. The lattice results obtained withHISQaction forNτ = 6
and 8 are shown in Fig. 3 as function of the temperature in units of the chiral transition tempera-
tureTc = 154 MeV (see below) and also compared with earlier results obtained withp4 action and
Nτ = 4. For thep4 action we use the value of the transition temperatureTc = 204 MeV determined
in Ref. [10] for Nτ = 4. To reduce the cutoff effects the lattice spacing in theHISQcalculations
was set by the kaon decay constantfK . At high temperatures the fourth order fluctuations are close
to the values corresponding to non-interacting quark gas. At low temperatures the fourth order
baryon number fluctuations are reasonably well described by hadron resonance gas. This is not the
case, however, for the electric charge. One possible reason for the disagreement between the lattice
and HRG model in this case could be the large cutoff effects in the pion sector. Electric charge
fluctuations are very sensitive to the pion sector, which is largely distorted on the lattice even if
HISQ or stout action is used. These distortions correspond effectively to a larger pionmass that
would explain why the lattice data are below the HRG expectations. Fourth order fluctuations have
a maximum in the transition region. Interestingly enough the position of the maximum inT/Tc is
roughly the same for theHISQ and p4 actions. The height of the peak, however, is significantly
larger for theχQ

4 whenp4 action is used.
Second and fourth order light and strange quark number fluctuations athigh temperatures have

been studied on the lattice in Refs. [38, 41] and compared with resummed perturbative calculations
[42, 43]. The resummed perturbative calculations seem to describe the lattice data quite well at
T > 300 MeV.

4. Deconfinement : color screening

One of the most prominent feature of the quark gluon plasma is the presenceof chromoelectric

6
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(Debye) screening. The easiest way to study chromoelectric screeningis to calculate the Polyakov
loop. The Polyakov loop is an order parameter for the deconfinement transition in pure gauge
theory, which is governed byZ(N) symmetry. For QCD this symmetry is explicitly broken by
dynamical quarks. There is no obvious reason for the Polyakov loop to be sensitive to the singular
behavior close to the chiral limit, although speculations along these lines have been made [45]. The
Polyakov loop is related to the screening properties of the medium and thus to deconfinement. After
proper renormalization, the square of the Polyakov loop characterizes the long distance behavior
of the static quark anti-quark free energy; it gives the excess in free energy needed to screen two
well-separated color charges. The renormalized Polyakov loop, calculated on lattices with temporal
extentNτ , is obtained from the bare Polyakov

Lren(T) = z(β )Nτ Lbare(β ) = z(β )Nτ

〈

1
3

TrW(~x)

〉

, W(~x) =
Nτ−1

∏
x0=0

U0(x0,~x), (4.1)

whereU0 = exp(igaA0) denotes the temporal gauge link andz(β ) is the renormalization constant
determined from theT = 0 static potential [11]. Continuum results for the renormalized Polyakov
loop have been obtained withstout[17] andHISQactions [48]. These are shown in Fig. 4 together
with Nτ = 6 HISQresults [19]. One can see a good agreement between thestoutandHISQresults.
I also compare the 2+1 flavor QCD results with the corresponding results in pure gauge theory [46,
47] as well as with the prediction of non-interacting gas of static-light(strange) hadrons [48, 49].
We see that in the vicinity of the transition temperature the behavior of the renormalized Polyakov
loop in QCD and in the pure gauge theory is quite different. The calculation ofLren based on non-
interacting static-light hadron gas can explain the lattice data forT < 140 MeV. The renormalized
Polyakov loop has also been calculated using lattice fermion formulations other than staggered,
namely the Wilson formulation [20] and the overlap formulation [24]. These formulations are
considerably more expensive computationally than the staggered formulationand therefore the
calculations have been performed at unphysical pion mass. The results obtained using Wilson
action and overlap action for the Polyakov loop agree very well with the staggered fermion results
at the same value of the pion masses [20, 24].

Further insight on chromoelectric screening can be gained by studying thesinglet free energy
of static quark anti-quark pair (for reviews on this see Ref. [50, 51]),which is expressed in terms
of the correlation function of temporal Wilson lines in Coulomb gauge

exp(−F1(r,T)/T) =
1
3

Tr〈W(r)W†(0)〉. (4.2)

Instead of using the Coulomb gauge the singlet free energy can be defined in gauge invariant
manner by inserting a spatial gauge connection between the two Wilson lines. Using such definition
the singlet free energy has been calculated inSU(2) gauge theory [52]. It has been found that
the singlet free energy calculated this way is close to the result obtained in Coulomb gauge [52].
The singlet free energy turned out to be useful to study quarkonia binding at high temperatures
in potential models (see e.g. Ref. [44] and references therein). It alsoappears naturally in the
perturbative calculations of the Polyakov loop correlators at short distances [53].

The singlet free energy has been recently calculated in 2+1 flavor QCD with HISQaction on
243×6 and 163×4 lattices [54]. The numerical results are shown in Fig. 4. At short distances the

7
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Figure 4: Left: The renormalized Polyakov loop as function of the temperature in 2+1 flavor QCD and
pure gauge theory. Right: The singlet free energy as function of the distance at different temperature calcu-
lated withHISQaction [54]. The solid line in the left panel corresponds to static-ligh(strange) hadron gas
prediction forLren (see text). The dashed line in the right panel is theT = 0 potential [19].

singlet free energy is temperature independent and coincides with the zero temperature potential.
In purely gluonic theory the free energy grows linearly with the separationbetween the static quark
and anti-quark in the confined phase. In presence of dynamical quarks the free energy is saturated
at some finite value at distances of about 1 fm due to string breaking (see e.g. Ref. [50]). This
is also seen in Fig. 4. Above the deconfinement temperature the singlet freeenergy is exponen-
tially screened at sufficiently large distances [46, 47] with the screening mass proportional to the
temperature , i.e.

F1(r,T) = F∞(T)−
4
3

g2(T)

4πr
exp(−mD(T)r), mD ∼ T. (4.3)

The lattice data for the singlet free energy are consistent wit these expectations forr > 0.8/T.
Let me finally note that contrary to the electro magnetic plasma the static chormomagnetic

fields are screened in QGP. This is due to the fact that unlike photons gluons interact with each other
(the stress tensor is non-linear in QCD). Magnetic screening is non-perturbative, i.e. it does not
appear at any finite order of pertubation theory. In lattice calculations chromomagnetic screening
is studied either in terms of spatial Wilson loops [55] or in terms of spatial gluon propagators
[56, 57, 58]. The numerical results obtained so far show that the length scale related to magnetic
screening is larger than the one related to electric screening.

5. Chrial transition

The Lagrangian of QCD has an approximateSUA(3) chiral symmetry. This symmetry is bro-
ken in the vacuum. The chiral symmetry breaking is signaled by non-zero expectation value of
the quark or chiral condensate,〈ψ̄ψ〉 6= 0 in the massless limit. This symmetry is expected to be
restored at high temperatures and the quark condensate vanishes. There is an explicit breaking of
the chiral symmetry by the non-zero values ofu,d ands quark masses. While due to the relatively
large strange quark mass (ms ≃ 100 MeV)SUA(3) may not be a very good symmetry its subgroup

8
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SUA(2) remains a very good symmetry and is relevant for the discussion of the finite temperature
transition in QCD. If the relevant symmetry isSUA(2) the chiral transition is expected to be second
order for massless light (u andd) quarks belonging to theO(4) universality class. Recent calcu-
lations with p4 action support this pictures [59]. This also means that for non-zero light quark
masses the transition must be a crossover. The crossover nature of the transition is supported by
calculations in Ref. [60]. TheUA(1) symmetry is explicitly broken in the vacuum by the anomaly
but it is expected to be effectively restored at high temperatures as non-perturbative vacuum fluc-
tuations responsible for its breaking are suppressed at high temperatures. If theUA(1) symmetry is
restored at the same temperature as theSUA(2) symmetry the transition could be first order [61].
Recent calculations with staggered [62] as well as with domain wall fermions [23] suggest that
UA(1) symmetry gets effectively restored at temperature that is significantly higherthan the chiral
transition temperature.

For massless quark the chiral condensate vanishes at the critical temperatureT0
c and is the or-

der parameter. Therefore in the lattice studies one calculates the chiral condensate and its derivative
with respect to the quark mass called the chiral susceptibility. For the staggered fermion formula-
tion most commonly used in the lattice calculations at non-zero temperature these quantities can
be written as follows:

〈ψ̄ψ〉q,x =
1
4

1
N3

σ Nτ
Tr〈D−1

q 〉, (5.1)

χm,q(T) = nf
∂ 〈ψ̄ψ〉q,τ

∂ml
= χq,disc+ χq,con q = l ,s, (5.2)

where the subscriptx= τ andx= 0 will denote the expectation value at finite and zero temperature,
respectively. Furthermore,Dq = mq ·1+D is the fermion matrix in the canonical normalization and
nf = 2 and 1 for light and strange quark. In Eq. (5.2) we made explicit that chiral susceptibility
is the sum of connected and disconnected Feynman diagrams. The disconnected and connected
contributions can be written as

χq,disc =
n2

f

16N3
σ Nτ

{

〈
(

TrD−1
q

)2
〉−〈TrD−1

q 〉2
}

, (5.3)

χq,con = −
nf

4
Tr∑

x
〈D−1

q (x,0)D−1
q (0,x)〉 , q = l ,s. (5.4)

The disconnected part of the light quark susceptibility describes the fluctuations in the light quark
condensate and is directly analogous to the fluctuations in the order parameter of an O(N) spin
model. The second term (χq,con) arises from the explicit quark mass dependence of the chiral
condensate and is the expectation value of the volume integral of the correlation function of the
(isovector) scalar operator̄ψψ . Let me note that in the massless limit onlyχl ,disc diverges.

5.1 The temperature dependence of the chiral condensate

The chiral condensate needs a multiplicative, and also an additive renormalization if the quark
mass is non-zero. Therefore the subtracted chiral condensate is considered

∆l ,s(T) =
〈ψ̄ψ〉l ,τ −

ml
ms
〈ψ̄ψ〉s,τ

〈ψ̄ψ〉l ,0−
ml
ms
〈ψ̄ψ〉s,0

. (5.5)

9
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Figure 5: The subtracted chiral condensate calculated withHISQaction in the continuum limit compared
to the renormalized Polyakov loop (left) and light quark number fluctuation (right). The continuum results
for ∆l ,s andLren have been taken from Ref. [48], while the continuum results for χB

2 have been taken from
Ref. [39].

In Fig. 5 I show continuum results for∆l ,s calculated withHISQ action and compared to the
renormalized Polyakov loop and baryon number fluctuation previously discussed in relation to the
deconfining transition. The rapid increase inχB

2 happens roughly in the same temperature interval
where∆l ,s shows a rapid decrease, while it is difficult to make similar statements forLren due to
its very smooth behavior. However, it is clear from Fig. 5 thatLren is very far from unity for
temperatures where∆l ,s is very small.

Another way to get rid of the multiplicative and additive renormalization is to subtract the zero
temperature condensate and multiply the difference by the strange quark mass, i.e. consider the
following quantity

∆R
q = d+2msr

4
1(〈ψ̄ψ〉q,τ −〈ψ̄ψ〉q,0), q = l ,s. (5.6)

The factorr4
1 was introduce to make the combination dimensionless. Herer1 is the scale parameter

defined from the zero temperature static potential [19]. It is convenient tochoose the normalization
constant to be the light quark condensate forml = 0 multiplied bymsr4

1. In Fig. 6 the renormalized
quark condensate is shown as function of the temperature forHISQ andstout actions. We see a
crossover behavior for temperature of(150−160) MeV, where∆R

l drops by 50%. The difference
between thestout andHISQ results is a quark mass effect. Calculations forHISQ action were
performed formπ = 160 MeV, while thestoutcalculations were done for the physical quark mass.
For a direct comparison withstout results, we extrapolate theHISQ data in the light quark mass
and also take care of the residual cutoff dependence in theHISQdata. This was done in Ref. [19]
and the results are shown in the figure as black diamonds demonstrating a good agreement between
HISQandstoutresults. Contrary to∆R

l the renormalized strange quark condensate∆R
s shows only

a gradual decrease over a wide temperature interval dropping by 50% only at significantly higher
temperatures of about 190 MeV. The subtracted chiral condensate hasalso been calculated using
Wilson and overlap formulations [20, 24]. These calculations show good agreement with staggered
results at the corresponding values of the pion mass.
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Figure 6: The renormalized chiral condensate∆R
l for theHISQaction withml/ms = 0.05 is compared to the

stoutdata. In the right panel, we show the renormalized strange quark condensate∆R
s for theHISQaction.

5.2 O(N) scaling and the transition temperature

In the vicinity of the chiral phase transition, the free energy density may be expressed as a sum
of a singular and a regular parts,

f = −
T
V

lnZ ≡ fsing(t,h)+ freg(T,ml ,ms) . (5.7)

Heret andh are dimensionless couplings that control deviations from criticality. They are related
to the temperatureT and the light quark massml as

t =
1
t0

T −T0
c

T0
c

, h =
1
h0

H , H =
ml

ms
, (5.8)

whereT0
c denotes the chiral phase transition temperature,i.e., the transition temperature atH = 0.

The scaling variablest, h are normalized by two parameterst0 andh0, which are unique to QCD
and similar to the low energy constants in the chiral Lagrangian. These needto be determined
together withT0

c . In the continuum limit, all three parameters are uniquely defined, but depend on
the value of the strange quark mass.

The singular contribution to the free energy density is a homogeneous function of the two
variablest andh. Its invariance under scale transformations can be used to express it in terms of a
single scaling variable

z= t/h1/βδ =
1
t0

T −T0
c

T0
c

(

h0

H

)1/βδ
=

1
z0

T −T0
c

T0
c

(

1
H

)1/βδ
(5.9)

whereβ andδ are the critical exponents of theO(N) universality class andz0 = t0/h1/βδ
0 . Thus,

the dimensionless free energy densityf̃ ≡ f/T4 can be written as

f̃ (T,ml ,ms) = h1+1/δ f f (z)+ freg(T,H,ms) , (5.10)

where f f is the universal scaling function and the regular termfreg gives rise to scaling violations.
This regular term can be expanded in a Taylor series around(t,h) = (0,0).
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It should be noted that the reduced temperaturet may depend on other couplings in the QCD
Lagrangian which do not explicitly break chiral symmetry. In particular, it depends on light and
strange quark chemical potentialsµq, which in leading order enter only quadratically,

t =
1
t0

(

T −T0
c

T0
c

+ ∑
q=l ,s

κq

(µq

T

)2
+κls

µl

T
µs

T

)

. (5.11)

The transition temperature can be defined as peaks in susceptibilities (response functions) that
are second derivatives of the free energy density with respect to relevant parameters. Since there
are two relevant parameters we can define three susceptibilities:

χm,l =
∂ 2 f̃

∂m2
l

, χt,l =
∂ 2 f̃

∂ t∂ml
, χt,t =

∂ 2 f̃
∂ t2 . (5.12)

Thus three different pseudo-critical temperaturesTm,l , Tt,l andTt,t can be defined. In the vicinity
of the critical point the behavior of these susceptibilities is controlled by threeuniversal scaling
function that can be derived fromf f . In the chiral limitTm,l = Tt,l = Tt,t = T0

c . There is, however,
an additional complication forO(N) universality class: whileχm,l andχt,l diverge at the critical
point forml → 0

χm,l ∼ m1/δ−1
l , χt,l ∼ m(β−1)/βδ

l , (5.13)

χt,t is finite becauseα < 0 for O(N) models (χt,t ∼ |t|−α ). Therefore, one has to consider the
third derivative of f̃ with respect tot :

χt,t,t =
∂ 3 f̃
∂ t3 . (5.14)

In the vicinity of the critical point the derivatives with respect tot can be estimated by taking
the derivatives with respect toµ2

l , i.e. the response functionsχt,l andχt,t,t are identical to the second
Taylor expansion coefficient of the quark condensate and the sixth order expansion coefficient to the
pressure, respectively. The former controls the curvature of the transition temperature as function of
the quark chemical potentialµq and was studied forp4 action usingNτ = 4 and 8 lattices [63]. The
later corresponds to the sixth order quark number fluctuation which is related to the deconfinement
aspects of the transition. The fact that this quantity is sensitive to the chiral dynamics points to
a relation between deconfining and chiral aspects of the transition. In the following I discuss the
determination of the transition temperature defined as peak position ofχm,l , i.e. Tc = Tm,l .

5.3 Determination of the transition temperature

The O(N) scaling described in the above subsection can be used to determine the pseudo-
critical temperature of the chiral transition. For the study of theO(N) scaling it is convenient to
consider the dimensionless order parameter

Mb = ms
〈ψ̄ψ〉l

T4 . (5.15)

The subscript "b" refers to the fact that this is a bare quantity since the additive UV divergence is
not removed. From the point of view of the scaling analysis this divergentterm is just a regular

12
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contribution. For sufficiently small quark mass and in the vicinity of the transitionregion we can
write

Mb(T,H) = h1/δ fG(t/h1/βδ )+ fM,reg(T,H). (5.16)

Here fG(z) is the scaling function related tof f and was calculated forO(2) andO(4) spin models
[64, 65, 66]. The regular contribution can be parametrized as [19]

fM,reg(T,H) = at(T)H

=

(

a0 +a1
T −T0

c

T0
c

+a2

(

T −T0
c

T0
c

)2
)

H. (5.17)

Then we have the following behavior for the light chiral susceptibility

χm,l

T2 =
T2

m2
s

(

1
h0

h1/δ−1 fχ(z)+
∂ fM,reg(T,H)

∂H

)

,

with fχ(z) =
1
δ

[ fG(z)−
z
β

f ′G(z)]. (5.18)

One then performs a simultaneous fit to the lattice data forMb and χm,l treatingT0
c , t0,h0,a0,a1

anda2 as fit parameters [19]. This gives a good description of the quark mass and temperature
dependence ofχm,l and allows to determine accurately the peak position inχm,l . Using this scaling
analysisTc has been determined forasqtadandHISQactions for differentNτ . Having determined
Tc for HISQ andasqtadaction for eachNτ a combined continuum extrapolation was performed
using different assumption about theNτ dependence ofTc which resulted in the value [19]:

Tc = (159±9) MeV. (5.19)

The analysis also demonstrated thatHISQ andasqtadaction give consistent results in the con-
tinuum limit. The Budapest-Wuppertal collaboration foundTc = 147(2)(3)MeV, 157(3)(3)MeV
and 155(3)(3)MeV defined as peak position in the chiral susceptibility, inflection points in∆l ,s and
∆R

l respectively [17]. These agree with the above value within errors. Thepeak position inχdisc

calculated using Domain Wall Fermions is also consistent with theTc value in Eq. (5.19).

6. Conclusions

In recent years significant progress has been made in lattice QCD calculations at non-zero tem-
perature. Chiral and deconfining aspects of the QCD transition have been studied using improved
staggered quark formulation allowing to control discretization effects. Somequantities have been
calculated at small baryon density using Taylor expansion in chemical potentials. At sufficiently
low temperatures lattice results can be understood in terms of hadron resonance gas model, while
at high temperatures resummed perturbative calculations describe the lattice data quite well. For
several quantities it has been shown that in the continuum limit different discretization schemes,
including discretizations other than staggered, give consistent results. In particular, agreement has
been reached on the value of the chiral transition temperature. There is stilldisagreement in the
lattice calculation of the equation of state.
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