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1. Introduction

Throughout this proceeding —see also [1]— we shall be interested in a generic Euclidean
space two-point function denoted by D(p2). We leave it open whether this corresponds to the
propagation of elementary particles or bound state degrees of freedom, corresponding to a certain
Lagrangian of a set of fundamental fields. In any case, this D(p2) should obey a very specific
integral representation, given by

D(p2) =
∫

∞

0
dµ

ρ(µ)

µ + p2 , (1.1)

at least when the considered particle is one that belongs to the asymptotic observable spectrum.
This integral is the (Euclidean version) of the Källén-Lehmann representation, with ρ(µ) the

spectral density. In a more mathematics based language, Eq. (1.1) corresponds to a Stieltjes integral
transform [2]. Using Cauchy’s theorem, it is quickly derived that ρ(t) is directly proportional to
the discontinuity of D(t) in the complex plane along the negative real axis. Through the optical
theorem, this has the important consequence that ρ(µ) must be positive as it corresponds to a
physical probability. The spectral density ρ(µ) contains crucial physical information. For example,
a massive particle will reflect in a δ (µ−µ0)-function peak in ρ(µ), finite peaks can be related to
instable particles etc. Spectral densities are also useful to study transport properties of e.g. the
quark gluon plasma and so on.

The expression (1.1) defines the unique analytic continuation to the complex squared mo-
mentum plane of the Euclidean propagator that is usually1 only probed for p2 ≥ 0. However, the
behaviour of Green functions in terms of complex momenta is not only of importance for the study
of the physical spectrum of quantum field theories, knowledge of these is also of paramount im-
portance to study the bound state equations in terms of their constituents. Let us only think about
unphysical gluons and quarks that are however bound together into colorless states. These can, for
example, be studied using moment techniques [3, 4] or the Bethe-Salpeter equations [5]. Precise
spectral knowledge of the input gluons and/or quarks is required in these instances.

We hope that by now we have briefly motivated why it is important to learn about the spectral
properties of Green functions, in particular of propagators. It is however a very cumbersome task
to directly convert (accessible) knowledge of D(p2) into an estimate for ρ(µ). A beautiful result
of Widder (1941) says

ρ(t) = lim
n→+∞

(−1)n+1 1
(n!)2 ∂

n
t
[
t2n+1

∂
n+1
t D(t)

]
, t ≥ 0 (1.2)

but this formula is in most cases impractical: taking the ∞th derivative is a numerical beast. In
some cases stability can be reached for large n using appropriate numerical derivation and some
analytical cases can be worked out exactly, see f.i. [6].

The main goal is, in principle, when D(p2 ≥ 0) is sufficiently well known via nonperturbative
lattice data, to construct an trustworthy approximation for ρ(µ), i.e. we wish to obtain at least some
information on the analytical structure of Green functions. A powerful method has been advocated
in [9], based on the Maximum Entropy Method (MEM) from inverse problem analysis. Although

1In particular when using lattice Monte Carlo simulations.
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powerful, MEM is also a quite demanding tool from the calculational viewpoint, and in its original
formulation it assumes a positive spectral density. Therefore, we will try to develop a somewhat
less demanding tool that simultaneously could also be used to get e.g. spectral information on
unphysical particles.

2. Tikhonov-Morozov regularization

Before turning to physical applications, we introduce in brief the necessary language we shall
use. Let us first try to understand better why it is so hard to invert the Källén-Lehmann integral.
We notice that, upon taking a Fourier transform of Eq. (1.1), we find

f (t)≡ 1
2π

∫
∞

−∞

d pe−iptD(p2) =
1
2

∫
∞

0
dµ

ρ(µ)
√

µ
e−t
√

µ =
∫

∞

0
dyρ(y2)e−ty ≡

∫
∞

0
dyρ̂(y)e−ty. (2.1)

With the notation L f (t) =
∫

dse−st f (s) = for the (self-adjoint) Laplace transform, we thence
observe that

G = L 2
ρ̂ = L L ∗

ρ̂, (2.2)

meaning that the Källén-Lehmann representation is nothing else than a double Laplace transform.
From this, we can easily appreciate the intrinsic problem in inverting it: it is indeed well-known
that L −1 is a typical ill-posed problem. The obstacle to simply implement L −1 is due to the
exponential dampening: a tiny variation in L f (∼ propagator) will ask for massive changes in f (∼
spectral density). In practice, as the data for the propagator will always be subject to uncertainties
(errors), there will unavoidably appear large uncertainties in the outcome, viz. ρ(µ).

In order to give a meaningful version of the inverse Källén-Lehmann representation, consider
a generic ill-posed problem

y = K x , ||y− yδ || ≤ δ , (2.3)

with yδ a set of data we have for the quantity y, polluted with “noise” (errors) δ . We now want a
controllable solution for x: if we get better and better data, we should come closer and closer to the
exact solution. A direct inversion is useless, thus we need to regularize the system [7].

The MEM is one example of obtaining a regularized system. Here, we focus on a (simple)
Tikhonov regularization. We will search for a solution xδ such that

Jλ = ||K x− y||+λ ||x||2 (2.4)

is minimal, λ > 0 is a regularization parameter. The meaning of this is intuitively clear: we search
for a solution “sufficiently close” to the real one in norm, since for λ = 0 we are back at the
original (but ill-posed) problem. This already signals that we should not take λ too small, at the
risk of ending up again close to bad behaviour. Contrarily, for λ too large we are drifting too far
off the original problem.

One can now show [7] that xλ is the (unique) solution of the so-called normal equation:

λxλ +K ∗K xλ = K ∗y (2.5)

3
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Here, we immediately notice that this latter equation is well-posed because the operator K ∗K +λ

is strictly positive and as such invertible. One can also understand the importance of the strictly
positive parameter λ from a matrix point of view. If the matrix representation of the start operator
K would be considered, a singular value decomposition would reveal the occurrence of near-to-
zero singular values, obstructing the inversion. The presence of λ > 0 does however acts as a
screening filter on these very small singular values.

Concerning the choice of λ , we employ an a posteriori fixing by making use of the solution
xλ . A controllable way is the Morozov discrepancy principle: choose that λ with

||K xλ − yδ ||= δ (2.6)

A unique solution xλ ,δ exists as can be proven. This again looks quite reasonable: if the noise
on the input data vanishes, δ → 0, the “noise” on the approximate equation will also vanish. We
basically search for “output” of similar quality as the “input”. The discrepancy principle also avoids
selecting a too small λ , which would drive us back dangerously close to the ill-posed case.

We end with a few small observations.

• The assumption made is that the integral equation (1.1) has a solution. This is of course not
guaranteed, we shall come back to this issue later.

• The equations to be solved become linear, so the computational effort is well under control.
It also allows to use standard tools to approximate the integrals etc. We shall elaborate on
this in a paper in preparation [10].

• There are no a priori assumptions made on the sign of solution, i.e. ρ(µ) can thus be non-
positive.

3. A first application: the lattice scalar glueball

We can now test our proposed method on a physical example. We consider pure SU(3) gauge
theory. The physical quantities are believed to be colorless gauge invariant gluon bound states,
better known as glueballs. The simplest (lightest) one should be the scalar state, with JPC quantum
numbers 0++. We constructed the lattice equivalent (up to a-corrections, with a the lattice spacing)
of the corresponding gauge invariant continuum operator F2

µν . We computed its correlator numeri-
cally using Monte-Carlo simulations. We therefore generated ∼ 900 configurations in Coimbra &
Ghent at β = 6.2, V = 644 with a ≈ 0.07261fm, La ≈ 4.65fm. We are eventually interested in its
spectral density where

D(p2) =
〈

F2
µνF2

αβ

〉
p
=
∫

∞

0

ρ(µ)

µ + p2 dµ (3.1)

A peak in ρ(µ) can be used to get an estimate of the mass.
We chose this particular example as it can be compared with alternative and well-established

mass estimates for the pure glueball states, see e.g. [8].
In 4d quantum field theory, there is an additional complication that we need to take into ac-

count: ultraviolet divergences need to be tamed by considering a suitably subtracted correlation
function. We refer to [10] for the procedure we followed here, we suffice by pointing out that a
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Figure 1: The (bare) scalar glueball correlator.

power counting analysis learns that the used 0++ correlator asks for 3 subtractions. The bare data
is shown in Fig. 1. Let us call G (p2) the subtracted propagator. Thus we are interested in

G = L 2
ρ̂. (3.2)

The normal equation to be solved reads

L 4
ρ̂ +λρ̂ = L 2G δ , (3.3)

or explicitly, this amounts to consider∫
∞

0
dtρ̂(t)

ln z
t

z− t
+λρ̂(z) =

∫
∞

0
dt

G (t)
t + z

. (3.4)

The notation ρ̂ refers to the subtracted spectral density. The r.h.s. integral (over the data) can be
handled with spline interpolation, for the l.h.s. a stable approach will rely on a Gauss-Chebyshev
quadrature. Although the shown (subtracted) spectral density is only a first (incomplete) attempt,
we nonetheless observe a clear signal of a peak emerging around ∼ 1.8 GeV, which is pretty close
to what was reported in [8], ∼ 1.71 GeV.

4. A second application: the mock Landau gauge gluon

In the case that one desires to tackle the QCD bound state problem with analytical continuum
methods, one is forced to abandon gauge invariance in favor of a gauge fixed setting. A widely
scrutinized gauge fixing is the Landau choice where the gauge field is made transverse. As trust-
worthy nonperturbative data is wished also for those gauge fixed quantities, the Landau gauge is a
good choice as it can be accessed through lattice sampling as well. In recent years, see [12] for a
very short list of references, evidence accumulated in favour of a particular behaviour of the gluon
propagator for p2 ≥ 0.

Different analytical nonperturbative approaches have been considered. One of them is the ef-
fective action that takes into account the Gribov gauge copy ambiguity [11], which allows for loop
computations whereas nonperturbative effects are taken into account by means of vacuum conden-
sates. This approach also allows to probe the Green functions in the complex squared momentum
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Figure 2: The (subtracted) scalar spectral density. This result is preliminarily and using only part of the
data and a simpler numerical integration routine than the one designated in the main text. We also chose by
hand a reasonable (neither too small or too big) value for λ for a first trial. A more complete and improved
version is currently being prepared [10].

plane and provides for (tree level) gluon propagators with complex conjugate poles [13], something
which can be interpreted as a manifestation of gluon confinement, see for example also [14] for a
similar quark observation. Attempts to interpret these cc gluon poles in terms of them generating
physical bound states can be found in e.g. [4, 16, 17].

Recently, also a first attempt in getting information in the complex plane for the gluon propaga-
tor was done in [15] by solving numerically the functional quantum equations of motion (Dyson-
Schwinger equations) for complex p2, reporting no trace of cc poles. As we explained, getting
sensible results for spectral densities is a highly complicated task, so it would be worthwhile to test
the estimations of [15]. Since we have in the meantime developed the machinery to access also
non-positive spectral densities with lattice data, we are in principle armed to verify the outcomes
of [15], under the assumption that the gluon propagator only displays a cut along the negative real
axis, as it was put forward in2 [15].

As a kind a warming up exercise for this proceeding, we opted to present an interesting illus-
tration of how delicate things can get when using data. Rather than using already the lattice data
itself, we consider the Refined Gribov-Zwanziger fit,

D(p2) =
p2 +M2

p4 +(M2 +m2)p2 +λ 4 , (4.1)

with the numbers taken from the paper of Dudal, Oliveira and Rodriguez-Quintero [13] and we
“generated” 40 data points from this3. Since the propagator (4.1) displays cc poles, it simply can-
not have an integral representation of the form (1.1). Nonetheless, using a limited set of data points
lying on the curve described by the function (4.1) does allow to construct a very good approxi-
mation assuming that the representation (1.1) does exist after all, see Fig. 3. The corresponding
spectral density —which is non-positive— is shown thereafter in Fig. 4. Here, we set by hand
λ = 1/16. Since the curve (1.1) does describe the gluon lattice data very well and since the con-
structed “mock gluon spectral density” of Fig. 4 looks pretty different from the one presented in

2Notice that lattice data alone do not allow to “prove” where the cuts would be located. One can however assume a
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Figure 3: Gluon propagator (magenta) (4.1) and its (in principle non-existent) integral representation (1.1)
(red).
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Figure 4: Spectral density for the (in principle non-existent) integral representation of the function (4.1).

[15], this might suggest it would be favourable to further study the spectral behaviour of the gluon
propagator. This is currently being undertaken using real lattice data input [10].

5. Conclusion

We have briefly introduced an alternative approach to the problem of extracting spectral den-
sities from numerical data and we tested it preliminarily on (1) the scalar glueball using gauge
invariant lattice data and (2) fabricated gluon data in the Landau gauge. A more elaborate discus-
sion and finer results will be presented elsewhere [10].
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