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1. Gauge-fixing as a sampling procedure

Gauge theories have a very interesting structure. Takeamyttod a set of fieldsp. If a fixed
field value at each space-time point is given, this definesnfigiration® [¢] of the fields. In a
gauge theory there exist local transformatigms> @+ &(x) of the fieldsg such that for the set
of configurations{®}, called an orbit, reachable by these transformations thespgonding path
integral remains invariant, i. e. all correlation functdmave the same value. Especially, this implies
that all correlation functions not invariant under a gaugadformation vanish. This vanishing is
the realization of Elitzur's theorem [1]. If this is the ondymmetry of theory, the non-vanishing
correlation functions define the non-trivial set of obsetga of the theory.

In principle, their calculation is all that is necessary &tatmine all experimental conse-
guences of a theory. One possibility to do this are, e. dicéatalculations. However, not all
interesting cases can be solved with such methods effigiéftiis has lead to the development of
methods using a different approach, and which include,,geagturbation theory and functional
methods.

In these cases, one removes the gauge symmetry, i. e., btesddicitly, in such a way as
that any observable is not modified. This is done by instegdsbintegrating over the whole orbit
in the path integral with a flat weight, integrating over itthvsome suitable non-flat weight: A
non-trivial sampling of the orbit is introduced. This indks the extreme case ofafunction as
weight to pick out a single element of the orbit, a single gaagpy. In general, if the sampling
includes only a subset of the orbit, this subset will be chliere the residual gauge orbit. If the
residual orbit contains gauge copies which cannot be defdrimto each other by infinitesimal
gauge transformations, these are called Gribov copies [2].

For the implementation of this gauge-fixing procedure ssdvpossibilities exist. In lattice
calculations it is indeed possible to perform this sampegmglicitly [3]. In perturbation theory,
this can usually be achieved by the inclusion of auxiliaridBethe so-called ghost-fields [4]. The
situation becomes complicated for non-lattice non-pbetive methods, like functional methods
[3, 5]. After the discussion of examples of such weightinggaedures in section 3, the current state
of the art in the continuum will be revised in section 4. Areiasting possibility is to include
residual symmetries in the weighting process, which wilbbdined in section 2. Finally, a few
concluding marks will highlight the current challenges @etson 5. For the sake of being explicit,
only Yang-Mills theory will be discussed here, though madsthis can be found easily in other
theories as well, e. g. QCD.

2. Residual symmetries

A starting point to illustrate the concept of residual synmies are the covariant gauges in
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perturbation theory [6], described by the (Euclidean) patibgral

<0>= / DA TCTTO Ay, 66 4% 2.1)
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where the gauge fieldsand the ghost and anti-ghost fieldandc interact with a coupling strength
g and live in the adjoint representation of the gauge algebdified by the structure constants
fabc and & is a parameter which modifies the sampling of the orbit with @aussian weight
factor. The ghost field contribution only compensates, duheir origin from a Jacobian [6], the
sampling in a way as to keep the values of the observablesianta Thus, the last two terms
of the Lagrangian (2.2) represents the perturbative saggirocedure, the gauge-fixing. As a
conseguence, correlation functions not invariant undellgauge transformation no longer vanish.

These gauges have several continuous residual global syrespender which the sampling
procedure is still invariant. One are global color rotasiomrAs a consequence, any correlation
function having a color direction still vanishes. To charigis would require a further reduction
of the sampled orbit. This is usually done when adding sdads in 't Hooft-type gauges [6],
though this is not necessary [7]. Similarly, there is a &ligcale symmetry of the ghost fields,
associated with ghost number conservation [6].

Far more interesting is the third symmetry, the BRST symyndthis global symmetry trans-
forms both ghost and gluon fields [6]. Since it modifies theglfields without altering any gauge-
invariant observables, this is necessarily a gauge tremstton, though one which also alters the
ghost fields. It thus connects the gauge copies, and the ehartbe ghost fields is necessary to
transform the weight accordingly.

In the case of the perturbative Landau gauge, i. e. the §mit 0, the BRST symmetry can no
longer act non-trivially on the gluon fields, as there is oné anly one gauge copy per orbit which
satisfies the perturbative Landau gauge conditipA = 0. However, there are still non-trivial
ghost transformations, which leads to an additional ghastghost symmetry [8], essentially ro-
tating ghost and anti-ghost into each other.

The situation becomes vastly more interesting when goingpesturbative. Then Gribov
copies [2, 9] appear. Thus BRST transformation can now am amore non-trivial even in Landau
gauge, and one regains a non-trivial and non-perturbatR&Bsymmetry [7]. However, this
requires, as it likely seems [10-12], to include all Grib@pies with a flat weight. This leads to
a number of complications, which can only be appreciateer afivestigating the appearance of
Gribov copies a bit more closely.

3. Landau-gauge examples on the lattice

Once non-perturbative, there are many Gribov copies gatisthe Landau gauge. The so
obtained residual gauge orbit turns out to have a highlytngial structure [3, 13]. In particular,
it is possible to define a bounded and convex Gribov re§oenclosed by the so-called Gribov
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horizon, in which all eigenvalues of the Faddeev-PopovaipepauDﬁb are strictly positive and
only one vanishing on the horizon. Since every orbit pads®sih this region [14], it is possible
to restrict the sampling of the orbit further to this regigntbe introduction of @®-function on the
Faddeev-Popov operator, wi@(0) = 1.

Still, many Gribov copies remain inside this Gribov regidio.deal with them, several differ-
ent gauge conditions have been invented [3]. These eittenpt to identify a single Gribov copy
as the representative of the gauge orbit, being the abdodutéau gauge [15] and its inverse [16],
based on the so-called fundamental modular region of mimgawage field norm or by externaliz-
ing either correlation functions [17] or eigenvalues [18fre Faddeev-Popov operator. Since such
constructions are notoriously complicated to construthécontinuum, this will not be discussed
further here, see [3] for more detalils.

It appears more interesting to pursue gauges averagingtioge@ribov region with some
prescription [3, 5]. In general, any such averaging proceds performed in the same way, i. e.,
by rewriting the perturbative expression (2.1) as [3, 19]

<0>=lim / DATCIEO Ay, C,E)0(—3,D)e | *Fow(A, ¢, &),
—

wherew is an appropriately chosen weight functions, which inctud@&ormalization such that any
observable remains unchanged. There are a few prominemipéasin use.

In lattice calculations, a convenient choicenis- 1, i. e. averaging over the first Gribov region
with a flat weight. Since usual Landau-gauge-fixing algonghappear to identify Gribov copies
with equal probability, this is in practical calculatiorimplified to take a single, random represen-
tative for each configuration, leading to the minimal Landauge [3]. In continuum calculation
another choice is based on the (yet unproven) assumptiothér@ exists a weight function such
that ©(—d,D3P)W(Ay, ¢,C) = &(—d,D3P) [13], i. e. averaging with a flat weight over the horizon
only. This choice has the advantage that it can be rewrittea l|cal Lagrangian using further
auxiliary ghost fields.

In contrast to these are gauges which average with some tyeiher exponential [3, 5]
or Gaussian [19], with some argument over the Gribov regi@i.course, once appropriately
normalized, this does not change observables. Such angawgracludes a control parameter
A, essentially the width of the sampling function. This is as® gauge parameter, besides the
perturbative ong .

To be concrete, consider the following two possibilities 9]

W1

exp <JV1—{—% / ddxddyagéa(x)azca(y)> 3.1)
Wy = exp<,/V2— %/ddxAﬁA‘E) , (3.2)

where the#{ are appropriately chosen normalizations. The first cas8][& a boundary term,
essentially driving the ghost dressing function at zero miotonm to a desired value with being

a Lagrange parameter. Especially, the value- 0 is a fixed point returning the minimal Landau
gauge, while the values and+o drive the ghost dressing function at zero momentum to the
minimum and maximum possible values. In the second casetfi®Gribov copies are weighted
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with the norm of the gauge field. When — oo, this will put all weight on the Gribov copies in
the fundamental modular region, i. e. the region of leasggdield norm. Again, the fixed-point
valueA,; = 0 returns the minimal Landau gauge.

To visualize the impact of both prescriptions, the gluorpaigator, the ghost dressing function,
and the running coupling in three dimensions are shown f@raévalues of thad s in figure 1 [20].
First of all, it is clearly visible how, within statisticakmrs, the cases foY; = 0 coincide with the
minimal Landau gauge, as expected from the general argsment

Concerning the weight function (3.1), there are severatiagions, in agreement with earlier
results [5]. When changing the gauge paramadteaway from zero towards large positive and
negative values, the results move towards those of thereatnmaxB and minB gauges developed
in [17], respectively. In these single-copy gauges the ghagpagator was extremalized. This is in
agreement with the results and reasoning of [5]. In contoastiginal hopes [17], but in agreement
with insights based on the BRST construction in [3, 21, 2B]gnalitative change is observed in
the infrared region. Especially the running coupling, thiowithin large errors, remains vanishing.
However, this will require more detailed investigationghe future for a more definite statement
[20], though any change would be surprising.

The situation for the weight function (3.2) is similar. Ik as argued [19], the results tend
to agree better with the absolute Landau gauge with an isicrg@alue of the gauge parameter
though the dependence is rather weak. Nonetheless, adsgaihge fulfills in its lattice implemen-
tation its intended purpose.

However, in both cases it should be kept in mind that not dalb@rcopies are guaranteed to be
found in lattice simulations [5]. Thus the observe resulessomething of a lower limit to what the
impact of Gribov copies really is. Thus an additional systBouncertainty remains. Especially, it
is never possible using the weighting function (3.2) in idatcalculation using any contemporary
algorithm to achieve a better approximation of the absdlatedau gauge than by any other method
[3, 16, 23-25] of searching the absolute minimum, sinceritreaver be better than the best Gribov
copy found. But this does not exclude the possibility that akgorithms based on this idea maybe
developed which can improve this.

4. Taking the continuum limit

Besides the technical problem of finding all Gribov copidé® problem remains of how to
incorporate weights like (3.1) and (3.2) into continuumcaddtions. Thef-function is known
not to change the form of functional equations [26]. Thisliegp[5] that these equations contain
the solutions both inside, outside, and in the whole of gdigjd configuration space. These
appear to consequently yield more solutions than obsemeébeolattice in the first Gribov region
[21, 27]. It remains thus an unsolved problem how to clagbiécontinuum solutions of functional
methods according to whether they belong to the first Grilegion or not, otherwise than by the
(necessarily approximate) comparison to lattice resien the approach of [13] cannot guarantee
this, as it has not been ruled out that a similar replacensguostified from outside the first Gribov
region.

Concerning the further weight (3.1), the weight functioraigually a surface term. Such
terms turn into boundary conditions [3, 28] in functionaliations, which indeed appear to yield
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Figure 1: Preliminary results on the gluon propagator (top panet®sgdressing function (middle panel),
and running coupling (bottom panel) for the weight functidB.1) (left panels) and (3.2) (right panels)
for various values of the gauge parametgr£ompared to both the minimal Landau gauge and the absolute
Landau gauge. Results are from three dimensionsWith( 7.9 fm)2 (428 lattice) ata= 0.189 fm (8 = 3.92)

[20]. Note the caveats of [5] on the problem of finding Grib@pies in lattice calculations. More details
will be available elsewhere [20].
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precisely the same results as the use of the weight funatitaitice calculations [3, 21]. However,
a formal understanding, or even proof, is still lacking.

The second weight (3.2) has so far only been used in the dosftexperturbative calculations
[19], similar in spirit to the approach of [13]. Since thenteis not a boundary term, it is not
equivalent to a genuine boundary condition, though somenaegts exist [17, 23], how this may
be achieved indirectly.

In total, it remains still an open challenge how to formallyrectly implement the same gauge
condition on the lattice and in the continuum, though thbeagood quantitative agreement ob-
tained between both approaches [3, 5, 21], as well as to mahelts, is already quite encouraging.

5. Concluding remarks

In summary, it becomes clear that the structure of the gadgje and how to sample it, is
irrelevant for any observable. This is, as it must be: Theothiction of the gauge symmetry is
only a technical tool to obtain a local field theory, whichearthiise can only be described in terms
of non-local objects, e. g. Wilson lines on a finite latticehisTalso implies that any valid way
of sampling the gauge orbit is equally admissible, and italkdvas long as it leaves observables
invariant.

While this is a well-developed subject in perturbation tlygd], it only becomes now more
and more relevant beyond perturbation theory. The reassimigle. Various non-perturbative
methods have reached a degree of maturity which makes thgraable of investigating physics.
However, many of them, especially in the continuum, use @edixed framework, just like per-
turbation theory. Furthermore, all non-perturbative rodhemploy some kind of approximation,
which cannot be systematically controlled. E. g. on a lattits maybe the continuum limit, which
is usually only addressed by extrapolations, and in coatinmethods it may be the truncation of
equation hierarchies [3]. Thus, itis desirable to complaea¢sults of different methods at the most
elementary steps, to improve systematic reliability. 8itieese are often now gauge-fixed quanti-
ties, it is necessary to guarantee for a comparison thategagts are sampled in the same way,
since otherwise there maybe fundamental differences legttbee results. This has led historically
to a number of problems [3, 8].

Besides the problems induced in this way by the samplingegha®, there is also an advan-
tage. Choosing a suitable sampling may make problems aota simpler [3, 7]. This has been
widely used in perturbation theory [6]. Harnessing thisgilufity in non-perturbative calcula-
tions, e. g. by formulations like (3.1) and (3.2), will pddgi help to solve many non-perturbative
problems more efficiently.
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