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1. Introduction

Understanding the deconfinement phase transition is one of the major cleallehparticle
physics. In quenched QCD reliable results are obtained within the latticeaprThis approach
fails, however, at large baryon density due to the notorious fermion sajsigm. Therefore alter-
native non-perturbative approaches to continuum QCD are desilalbiecent years a variational
approach to Yang—Mills theory in Coulomb gauge was developed [1], wigslprovided a decent
description of the infrared sector of the theory [2, 3, 4, 5, 6, 7]. Rigehis approach was ex-
tended to finite temperature [8] and also to full QCD [9]. In this talk | will regor the calculation
of the effective potential of the confinement order parameter within the Ham@ili@pproach [10].

In quantum field theory the temperatudrés most easily introduced by compactifying the Eu-
clidean time and interpreting the lendthof the compactified time interval as inverse temperature.
In finite temperature Yang-Mills theory the order parameter of confineméme isxpectation value
of the Polyakov loop

PlA] = %u%ﬂwﬂ% . (1.2)

The quantity(P[Ao] (X)) ~ exp[—Fx(X)L] is related to the free energy of a (infinitely heavy) quark
at spatial positiorX. In the confined phase this quantity vanishes by center symmetry while it is
non-zero in the deconfined phase, where center symmetry is brokesontimuum Yang-Mills
theory the Polyakov loop is most easily calculated in Polyakov g@agée = 0, Ag = diagonal.

In the fundamental modular region<0AgL /2 < 11 the Polyakov looP[Ao] is a unique function
of the field Ag, which, for SU2), is given byP[Aq] = cos(AoL/2). As a consequence of this
relation and of Jenssen’s inequality one can use instedd[8§]) alternativelyP[(Ao)] or (Ag) as
order parameter of confinement, Refs. [11, 12]. The order paramietenfinement can be most
easily obtained by calculating the effective poterg{ab] of a temporal background fiel chosen

in the Polyakov gauge and by calculating the Polyakov line (1.1) from the dmidigurationay
which minimizese[ag], i.e. (P[Ao]) ~ P[ag]. The effective potentiatag] was first calculated in
Refs. [13, 14] in 1-loop perturbation theory and is shown in Fig. 1. Thiemtial is minimal for

a vanishing field and the order parameter accordingly yiBl@s = 0] = 1, which indicates the
deconfining phase. The aim of the present work is to give a non-pattue evaluation o&[ay
[10] in the Hamilton approach to Yang-Mills theory [1].

It is obvious that the effective potential ¢fp) cannot be straightforwardly evaluated in the
Hamiltonian approach since the letter assumes Weyl gAgge0. However, we can exploit @)
invariance of Euclidean quantum field theory and compactify instead of thedtimespatial axis
(for example thexz-axis) to a circle and interpret the lendthof the compactified dimension as
inverse temperature. Therefore we will consider in the following Yang-Milkory at a finite
compactified lengtih. in a constant color diagonal background fialdand calculate the effective
potentiale[as]. In the Hamiltonian approach the effective poterg{d] of a spatial background field
a is given by the minimum of the energy density) /V calculated under the constraiff) = &.
This minimal property of the effective potential calls for a variational catiaha

2. Hamilton approach in background gauge

In the presence of an external constant background di¢he: Hamiltonian approach can be
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most conveniently formulated in the background gauge
[&,A} —0, d=d+a 2.1)

where all fields are taken in the adjoint representation. This gauge albmas explicit resolution
of Gauss’ law, which results in the gauge fixed Hamiltonian

H= % / ¢ (LRI AR +BR) + He, (2.2)
wherell = —i5/5,& is the momentum operator of the gauge fixed field and
JAzDet(—E).oT), D=0d+A (2.3)
is the Faddeev-Popov determinant. Furthermore,
2
He = 5 [ dxdy R p* (03I Fo(9)0 ) 24

is the analogue of the so-called Coulomb term which results from the kineticotfieime “longitu-
dinal” part of the momentum operator. Here

paz—B-ﬁz—(A—a)-ﬁ (2.5)
is the color charge density of the gluons, which interacts through thelkerne
N R Lo -1
F= (—D-d) (—d-d) (—D-d) . (2.6)
For a vanishing background fieltl= 0 the gauge (2.1) reduces to the ordinary Coulomb gauge and
the HamiltonianH (2.2) becomes the familiar Yang-Mills Hamiltonian in Coulomb gauge, [15].
Furthermore, as was shown in Ref. [8] the Coulomb tel#r(2.4) is negligible in the gluon sector.

Therefore we will ignore this term in the following.
We are interested here in the energy density in the gigi¥ minimizing

<H>a:: (WalH |@a) (2.7)

under the constrair(t&)a = a. For this purpose we perform a variational calculation with the trial

wave functional
WalA = 3, PPIA-a), QA= e HIAA, (2.8)
which already fulfills the constrainfA), = & For &= 0 this ansatz reduces to the trial wave

functional used in Coulomb gauge [1]. Proceeding as in the variatiopabaph in Coulomb gauge
[1], from (H)a — minone derives a set of coupled equations for the gluon and ghostgatopa

1 5 A1
2 = (AP~ a0 = “wt, G_—<<(D+a)d> > . (2.9)
2 a=0
Using the same approximation as in Ref. [8] in Coulomb gauge, i.e. restrictingotdotps in

the energy, while neglectingc (2.4) and also the tadpole arising from the non-Abelian part of the
magnetic energy, one finds from the minimizationlf), the gap equation

w?=—d-d+x2?, (2.10)
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wheré

2
X(1,2) = —% <W>ao = %Tr [GI(1)Glo(2)] (2.11)

is the ghost loop (referred to as “curvature”) with andl™ being the bare and full ghost-gluon
vertex. The gap equation (2.10) has to be solved together with the Dydomit®er equation
(DSE) for the ghost propagator

G l=—d.d—To(1)GIr(2)Z(2,1). (2.12)

Due to the presence of the background field these equations have tauvignzolor structure.
Fortunately, due to the choice of the background gauge (2.1), the foaridyfield enters these
equations only in form of the covariant derivatiste= d + a.

We are interested in the effective potential of a background field in thew€algebra, which
for SU(2) has the form&Ts. This field becomes diagonal in the Cartan basis defined by the eigen-
vectors of the generators of the Cartan subgréyp) = —io|o), o = 0,+1. By analyzing our
equations of motion, i.e. the gap equation and the ghost Dyson-Schwingggian, one finds that
these equations have solutions, which are diagonal in the Cartan basis

7°(9) =8°"2°(p), G (P)=6°"G’(P). (2.13)

This is not surprising since the source of the non-trivial color strugsuifee background field and
if this field is chosen to be diagonal in color space the same should be trak foopagators. In
addition, one can show that the propagators in the presence of thetactdield in background
gauge are related to the propagators in Coulomb gauge (i.e. in the absdrebarckground field),
2(p), G(p), by

2°(P) =2(p°), G°(P)=G(p?), (2.14)
where

g’ =p-oa (2.15)

is the momentum shifted by the background field. In this way the results of tietioaal calcu-
lation in Coulomb gauge (in the absence of the background field) areisnffio determine the
propagators in the presence of the background field in backgrowtgga

Lattice calculation [16] of the gluon propagator in Coulomb gauge show thafitton energy
can be nicely fitted by Gribov’s formula [17]

w(P) =4/ P>+ M*/p?. (2.16)

A full self-consistent solution of the gap equation (2.10) and the gho& (2S12) reveals that
w(pP) contains in addition sub-leading UV-logs, which on the lattice are found teriadl.sUsing
Gribov’s formula (2.16) forw(P) and solving the gap equation (2.10) fofp) yields

X(P) =M?/|p, (2.17)

which is indeed the correct IR-behavior obtained in a full solution [8] ef¢bupled ghost DSE
and gap equation but which misses the sub-leading UV-logs.

1We use here the compact notatiafl) = Aial1 (X1). For Lorentz scalars like the ghost, the index “1” stands for the
color indexa; and the spatial positioxy. Repeated indices are summed/integrated over.
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Figure 1: The Weiss potentiadyy multiplied by  Figure 2: The infrared potentiagr multiplied
L* as a function of the dimensionless field= by L* for differentL 1.
aL/(2m).

3. Theeffective potential

Compactifying the 3-axis to a circle with circumferericand choosing the background field
along the compactified dimensi@r= ag; the shifted momentum (2.15) becomes

P7=PL+(ph—0a)&, pn=2m/L, (3.1)

where g, is the projection ofg into the 1-2-plane angb, is the Matsubara frequency. In the
Hamiltonian approach the effective potential of the constant backgriieldds given by the energy
density in the state minimizingH), under the constrainfA), = a [18]. Using the gap equation
2.10 one finds for the energy density per transversal degree dbimei the present approximation

[10]
e(alL)= ;in_zw/ ((:12272;_2 (w(ﬁCf) _X(ﬁa)) . (3.2)

By shifting the summation index one verifies the periodicity

e(a+2m/L,L) =e(a,L), (3.3)

which is a necessary property for the effective potential of the camiémé order parameter by
center symmetry. Neglecting(p) Eq. (3.2) gives the energy of a non-interacting Bose gas with
single-particle energw(p). This quasi-particle picture is a consequence of the Gaussian ansatz
(2.8) for the wave functional. The quasi-particle enesgyp) is, however, highly non-perturbative,
see for example Eq. (2.16). The curvatyre) in Eq. (3.2) arises from the Faddeev-Popov deter-
minant in the kinetic part of the Yang—Mills Hamiltonian (2.2).

In certain limiting cases and for € aL/2m < 1 the energy density (3.2) can be calculated
analytically. Neglectingy(p) and assuming the perturbative expression for the gluon energy
w(pP) = |p| one finds from (3.2) the Weiss potential originally obtained in [14]

2 2
- () (39
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Figure 3: The simplified potential (3.7) multi- Figure 4: The numerical solutions of the gluon

plied by L* for different temperatures~. The  energyw and the curvaturg obtained in [8] .
critical temperature i3 ~ 485 MeV.

shown in Fig. 1. Neglecting (P) and using the infrared expression for the gluon enevgg) =
M?2/|p| (see Eq. (2.16)), one obtains [10]
aL\? aL
() 69

shown in Fig. 2. This expression drastically differs from the Weiss potefti4): Whileeyy (a,L)
is minimal fora = 0, the minimum ofer(a,L) occurs at = 17/L corresponding to a center sym-
metric ground state. According8yy (a,L) yields for the Polyakov loogP) = P[A¢ = 0] = 1 while
ar(a,L) yields(P) = P[Ag = /L] = 0.

The deconfinement phase transition results from the interplay betweeartfieireg infrared
potential, Eg. (3.5) and the deconfining UV-potential, Eg. (3.4). To illusthagdet us approximate
the gluon energy(pP) (2.16) by

MZ

er(al) = 2F

w(P) ~ || +M?/|p]. (3.6)

This expression agrees with the Gribov formula (2.16) in both, the IR andit\deviates from
it in the mid-momentum regime, which influences the deconfinement phase tnan¥fit c( )
given by Eq. (3.6) and witly (p) = 0 the energy density (3.2) becomes

e(avL) = aR(avL) +eUV(a7L> = gfjf <;I?[> ) (37)
f(x) =x*(x—1)?+cx(x—1), c= 3I\2/I:;_2

For small temperaturds ™!, er(a,L) dominates and the system is in the confined phase. As
increases the center symmetric minimumxat 1/2 eventually turns into a maximum and the
system undergoes the deconfinement phase transition, see Fig. 3dettrdined phasg(x) has
two degenerate minima and, starting in the deconfined phase, the phag®tramcsurs when the
three roots off’(x) degenerate. This occurs foe=1/2, i.e. for a critical temperature

Te=L1=v3M/m. (3.8)
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Figure 5: The numerically evaluated effective Figure6: The Polyakov loogP[a]) evaluated at
potential. The critical temperature T ~ 269 the minimuma = an, of the full effective poten-
MeV. tial (figure (a)) as a function of /T.

With the lattice resulM = 880 MeV this corresponds to a critical temperaturdof- 485 MeV,
which is much too high. This value is only slightly reducedlio= 432 MeV when the correct
Gribov formula (2.16) is used instead of the approximation (3.4). The neaby the transition
temperature comes out too high is the neglect of the ghostdpp= 0. This can be seen from
Fig. 4, where the gluon energy(p) and the curvaturg (p) obtained from the variational calcula-
tion in Coulomb gauge are shown. In the deep infrared the gluon erefgyand the curvature
X (p) agree, while in the ultraviolet(p) has the opposite sign @d(p) and is only suppressed by
a log compared teo(p). Therefore, neglecting the ghost loop enhances the infrared cdidribu
to the potential, which favors confinement, while at the same time it reduces theialit con-
tribution, which favors deconfinement. Both effects add coherently ast the deconfinement
transition to a higher temperature.

In a full numerical evaluation of the effective potential (3.2) using dgif) and x(p) the
numerical solution of the variational approach in Coulomb gauge obtainedfif®, one finds
the effective potential shown in Fig. 5. From this potential one extract#ieattemperature for
the deconfinement phase transitionTef~ 269 MeV, which is close to the lattice predictions of
T = 290 MeV. This value is also close to the range of critical temperaflires275...290 MeV
obtained in Ref. [8] from the grand canonical ensemble of Yang—MillsrtheoCoulomb gauge.
Let us also mention that if one uses to(p) the Gribov formula (2.16) and in accord with the gap
equation (2.10) fox (P) its infrared expression (2.17) one finds a critical temperatuiie of 267
MeV, which is only slightly smaller than the value obtained with the full numerichltsm for
w(pP) and x(P). This shows that it is the infrared part of the curvature (neglected in(&Ed)),
which is crucial for the critical temperature. In view of the ghost dominandke IR this is not
surprising. Fig. 6 shows the Polyakov loBfa] calculated from the minimurami, of the potential
(3.2). At the phase-transitioR[amin] rapidly changes fron® = 0 to P = 1, which is typical for a
second order phase transition.

In the present approach the deconfinement phase transition is entitelgnded by the zero-
temperature propagators, which are defined as vacuum expectatiea.v@hnsequently, the finite-
temperature behavior of the theory and, in particular, the dynamics of tenfieement phase
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transition must be fully encoded in the vacuum wave functional. The reshiésned above are
encouraging for an extension of the present approach to full QCDieg femperature and baryon
density.
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