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1. Introduction

Quark confinement follows from the area law of the Wilson loop average. The dual superconductivity is the
promising mechanism for quark confinemefi [ In many preceding works, the Abelian projecti@] {vas used
to perform numerical analyses, which exhibited the remarkable results such as Abelian domi@hantaypetic
monopole dominanced], and center vortex dominancB][in the string tension. However, these results are obtained
only in special gauges: the maximal Abelian (MA) gauge and the Laplacian Abelian gauge within the Abelian pro-
jection, which breaks the gauge symmetry as well as color symmetry (global symmetry).

In order to overcome the shortcomings of the Abelian projection, we have presented a new lattice formulation
of SU(N) Yang-Mills (YM) theory in the previous paper§,[7] (as a lattice version of the continuum formulations
[8,9] for SU(2) and [LQ] for SU(N)), which gives a decomposition of the gauge link variable suited for extracting the
dominant modes for quark confinement in the gauge independent way. In the G#@pfthe decomposition of the
gauge link variable was given on a lattidel] as a lattice version of the Cho-Duan-Ge-Faddeev-Niemi decompesition
[8]. For the gauge grou® = SU(N) (N > 3), it was found that the extension of the decomposition fi®id{2) to
SU(N) (N > 3) is not unique and that there are a number of possible ways of decompositions discriminated by the
stability subgroup of G, while there is the unique option &f = U (1) in the SU(2) caseL2).

For the case dB = SU(3), in particular, there are two possibilities which we call the maximal option and the min-
imal option. The maximal option is obtained for the stability grélig-U (1) x U (1), which enables us to give a gauge
invariant version of the MA gauge as the Abelian project®g [L5]. The minimal one is obtained for the stability
groupH = U (2) 2 SU(2) x U (1), which is suited for representing the Wilson loop in the fundamental representation
as derived from the non-Abelian Stokes theordd].[ In the static potential for a pair of quark and antiquark in the
fundamental representation, we have demonstratetiGinaind [17]: (i) the restricted-field dominance or “Abelian”
dominance (which is a gauge-independent (invariant) extension of the conventionally called Abelian dominance): th
string tensiongy obtained from the decomposwdfield (i.e., restricted field) reproduced the string tensigy of
the original YM field,ov /oy = 934 16% (ii) the gauge-independent non-Abelian magnetic monopole dominance:
the string tensiowy extracted from the restricted field was reproduced by only the (non-Abelian) magnetic monopole
part Omon Omon/Ov = 94+ 9%.

In this paper, we give further evidences for establishing the non-Abelian dual superconductivity picture for quark
confinement irSU(3) Yang-Mills theory claimed in17] by applying our new formulation to th8U(3) YM theory
on a lattice. First, we study the dual Meissner effect by measuring the distribution of chromo-flux created by.a pair of
static quark and antiquark. We compare the chromo-flux of the original Yang-Mills field with that of the restricted field
and examine if the restricted field corresponding to the stability gFbepU (2) reproduces the dual Meissner effect,
namely, the dominant part of the chromoelectric field strengtBl3) Yang-Mills theory. Second, we measure-the
possible magnetic monopole current induced around the flux connecting a pair of static quark and antiquark. _Third, w
focus on the type of dual superconductivity, i.e., type | or type Il. INSbé2) case, the extracted field corresponding
to the stability grougd = U (1) reproduces the dual Meissner effect, which gives a gauge invariant version of MA
gauge in the Abelian projection, as will be given/i8]. In this paper, we find that the dual superconductivity of the
SU(3) Yang-Mills theory is indeed the type I, in sharp contrast to3hi2) case: the border of type | and type11g].

2. Lattice formulation

We focus our studies on confinement of quarks in a specific representation, i.e., the fundamental representatio
For this purpose, we consider the Wilson loop operator for obtaining the quark potential, magnetic monopole curren
and chromo-field strength in a gauge invariant way. The Wilson loop operator is uniquely defined by giving a repre-
sentation, to which the source quark belongs. A remarkable fact is that the Wilson loop operator in the fundamente
representation leads us to the minimal option in the sense that it is exactly rewritten in terms of some of the variable
(i.e., the color fieldn and theV field) which are the same as those adopted in the minimal option, as shown in the
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process of deriving a non-Abelian Stokes theorem for the Wilson loop operator by Kbdida fierefore, we use the
reformulation of the Yang-Mills theory in the minimal option to calculate the average of the Wilson loop operator in
the fundamental representation. We give a brief summary of a new formulation of the &#i8eYM theory [6, 7].

For the originalSU(3) gauge link variabléJy , € SU(3), we wish to decompose it into new variabMs, and
Xxu Which have values in th8U(3) group, i.e.. Xy, € SU(3), Vi € SU(3), Uy p = Xy Vs € SU(3), so thatVy
could be the dominant mode for quark confinement, wkg is the remainder. In this decomposition, we require
thatVy , is transformed in the same way as the original gauge link varlableandXy , as a site variable by the full
SU(3) gauge transformatiofy: Uy, — Uy, = QUy ,QF, .

Vi — Viey = QVu @l X — Xty = QX Q). (2.1)

We introduce the key variabley called the color field. In the minimal option, the color field is definedhly=
E(A8/2)&T € Lie[SU(3)/U(2)], with A8 being the Gell-Mann matrix and the SU(3) group element. Then, the
decomposition is uniquely determined from E@<2), if the color fieldhy is specified7]:

Kep = El.,u detLup) >, Vou = XI,qu,u = LU, (2.2a)
~ +\-1/2 5 4 + +
LX,[J — (LX-,IJLX,[J) LXa“’ LX,[J — §l+ é(hX+UX7“hX+“UX7H) +8hXUX,[JhX+[JUX7IJ . (22b)

In order to determine the configurati¢hy} of color fields, we use the reduction conditi@) [¥] which guarantees
that the new theory written in terms of new variabl¥g (,Vy ;) is equipollent to the original YM theory. Here,.we
use the reduction condition: for a given configuration of the original link varialygs color fields{hy} are obtained
by minimizing the functional:

Fred[{hx}] = Z tr {(Di Uy ] hx)T(Di Uy ] hx)} . (2.3)
]

3. Method and results

We generate configurations of the YM gauge link varighlg,, } using the standard Wilson action o84 lattice
at 3 = 6.2. The gauge link decomposition is obtained according to the framework given in the previous section: the
color field configuratioq hy} is obtained by solving the reduction condition of minimizing the functionale®). or
each gauge configuratidiy ;, }, and then the decomposed variabeg,, }, { Xy, } are obtained by using the formula
eq.2.2). Inthe measurement of the Wilson loop average, we apply the APE smearing technique to reduc@Gjoises [

3.1 Dual Meissner effect

We investigate the non-Abelian dual Meissner effect as the mechanism of quark confinement. In order to-extrac
the chromo-field, we use a gauge-invariant correlation function propos#€]irfhe chromo-field created by a quark-
antiquark pair inSU(N) Yang-Mills theory is measured by using a gauge-invariant connected correlator between a
plaquette and the Wilson loop (see left panel of Big.

B L (r (UpL™WL)) 1 (tr(Up)tr(W))

V] =€y P wW) N W) &

whereF,,[U] is the gauge-invariant chromo-field strengfh;= 2N /g the lattice gauge coupling consta¥it, the
Wilson loop inZ-T plane representing a pair of quark and antiqubkka plaquette variable as the probe operator
to measure the chromo-field strength at the p&inandL the Wilson line connecting the sour@é and the probe
Up. HereL is necessary to guarantee the gauge invariance of the corrgjatmmd hence the probe is identified with
LUpLT. The symbok &) denotes the average of the operatoin the space and the ensemble of the configurations.
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color flux: Original Yang-Mills (L/e =8 , z/e =4) color flux: restricted field (L/e =8 , z/e =4 )
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Figure 1. Measurement of components of the chromoelectric felgnd chromomagnetic fielB as functions of the distance
y from thez axis. (left) The gauge invariant connected correlatiyl (Vv L") between plaquette U and Wilson loop W. (Center
panel) the originaBU(3) YM field, (Right panel) the restricted (2) field.
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Figure 2: The distribution inY-Z plane of the chromoelectric fiel, connecting a pair of quark and antiquark: (Left panel)
chromoelectric field produced from the original YM field, (Right panel) chromoelectric field produced from the restricted-field.

We measure correlators between the plaguéitand the chromo-field strength of the restricted figld as well
as the original YM fieldJy ;. See the center panel of Fig. Here the quark and antiquark source is introduced as
8 x 8 Wilson loop V) in theZ-T plane, and the prob@J,) is set at the center of the Wilson loop and moved along the
Y-direction. The center and right panel of Figshow respectively the results of measurements for the chromoelectric
and chromomagnetic fields,, (U] for the originalSU(3) field U andF,,[V] for the restricted fiel&/, where the field
strengthF,,, [V] is obtained by usin¥y , in eq3.1) instead otJy ;;. We have checked that eve¥fiU] is replaced by
WIV], together with replacement of the probigpL by the corresponding version, the change in the magnitude ‘of
the field strengtliF,, remains within at most a few percent.

From Figlwe find that only théc, component of the chromoelectric figlBy, Ey, E;) = (F1o, F20, F30) connecting
g andq has non-zero value for both the restricted fi¢ldnd the original YM fieldJ. The other components are
zero consistently within the numerical errors. This means that the chromomagneti@fidg, B,) = (Fz3, F31, F12)
connectingy andq does not exist and that the chromoelectric field is parallel ta &éxés on which quark and antiquark
are located. The magnitud® quickly decreases in the distangaway from the Wilson loop.

To see the profile of the nonvanishing comportenf the chromoelectric field in detail, we explore the distribu-
tion of chromoelectric field on the 2-dimensional plane. Bighows the distribution dE, component of the chromo-
electric field, where the quark-antiquark source represent@a 44 Wilson loopW is placed atY,Z) = (0,0),(0,9),
and the probd&) is displaced on th¥-Z plane at the midpoint of th&-direction. The position of a quark and an an-
tiquark is marked by the solid (blue) box. The magnitudé&gpfs shown by the height of the 3D plot and also the
contour plot in the bottom plane. The left panel of 2Zghows the plot oE; for the SU(3) YM field U, and the right
panel of Fig2 for the restricted-fiel®/. We find that the magnitudg, is quite uniform for the restricted part, while
it is almost uniform for the original pat except for the neighborhoods of the locationsg,af source. This difference
is due to the contributions from the remaining pénvhich affects only the short distance, as will be discussed in the
next section.
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Figure 3: The magnetic-monopole currektinduced around the flux along tlzeaxis connecting a quark-antiquark pair. (Left
panel) The positional relationship between the chromoelectricEgihd the magnetic currekt (Right panel) The magnitude
of the chromo-electronic curreB, and the magnetic curredt, = |k| as functions of the distangefrom thez axis.

3.2 Magnetic current

Next, we investigate the relation between the chromoelectric flux and the magnetic current. The magnetic(
monopole) current can be calculated as
k ="dF[V], (3.2)

whereF [V] is the field strength (2-form) of the restricted field (1-forvh)d the exterior derivative antidenotes the
Hodge dual operation. Note that non-zero magnetic current follows from violation of the Bianchi identity (If the field
strength was given by the exterior derivativewfield (one-form),F[V] = dV, we would obtairk =*d?V = 0).

Fig.'3 shows the magnetic current measureX#yY plane at the midpoint of quark and antiquark pair in Zhe
direction. The left panel of Fi@® shows the positional relationship between chromoelectric flux and magnetic current.
The right panel of Fig3 shows the magnitude of the chromoelectric fiejdleft scale) and the magnetic currdnt
(right scale). The existence of nonvanishing magnetic cukanbund the chromoelectric field, supports the dual
picture of the ordinary superconductor exhibiting the electric cuttembund the magnetic fielB.

In our formulation, it is possible to define a gauge-invariant magnetic-monopole clyrdayt usingV-field;
which is obtained from the field strength,,[V] of the fieldV, as suggested from the non-Abelian Stokes theorem
[14]. It should be also noticed that this magnetic-monopole current is a non-Abelian magnetic monopole extractec
from theV field, which corresponds to the stability grobip= U (2). The magnetic-monopole currekyt defined in
this way can be used to study the magnetic current around the chromoelectric flux tube, instead of the above definitic
of k (3.2). The comparison of two monopole currektwill be done in the forthcoming paper.

3.3 Type of dual superconductivity

Moreover, we investigate the QCD vacuum, i.e., type of the dual superconductor. The left panedl if Fig.
plot for the chromoelectric fiel®, as a function of the distangen units of the lattice spacingfor the originalSU(3)
field and for the restricted field.

In order to examine the type of the dual superconductivity, we apply the formula for the magnetic field derived
by Clem 2] in the ordinary superconductor based on the Ginzburg-Landau (GL) theory to the chromoelectric field
in the dual superconductor. In the GL theory, the gauge fetohd the scalar fielgp obey simultaneously the GL
equation and the Ampere equation:

(0" —igA*) (0 —igAL) @+ A (" p—n?) =0, (3.3)
0VFuy +i9[@* (0u@—igAL @) — (30— igAL @) @] = 0. (3.4)

Usually, in the dual superconductor of the type I, it is justified to use the asymptoticKetwiA) to fit the
chromoelectric field in the larggregion (as the solution of the Ampere equation in the dual GL theory). However,
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Figure 4: (Left panel) The plot of the chromoelectric fiek} versus the distancgin units of the lattice spacing and the
fitting as a functiorE;(y) of y according to (3.€). The red cross for the origin&U(3) field and the green square symbol for
the restricted field. (Right panel) The order parametegproduced as a functiap(y) of y according to8.€), togather with the
chromoelectric fieldg,(y).

ag? be c Ae {/¢e &g ® K
SU(3) YM field | 0.804(4) | 0.598(5) | 1.8784) || 1.672(14) | 3.14(9) | 3.75(12) | 4.36(30) | 0.45(1)
restricted field | 0.4353) | 0.547(7) | 1.787(5) || 1.828(23) | 3.26(13) | 3.84(19) | 2.96(30) | 0.48(2)

Table 1: The properties of the Yang-Mills vacuum as the dual superconductor obtained by fitting the data of chromoelectric field
with the prediction of the dual Ginzburg-Landau theory.

it is clear that this solution cannot be applied to the smadigion, as is easily seen from the fact thaty/A) — o

asy — 0. In order to see the difference between type | and type I, it is crucial to see the relativelyysegilbn:
Therefore, such a simple form cannot be used to detect the type | dual superconductor. However, this important aspe
was ignored in the preceding studies except for a wavk [

On the other hand, Clen22] does not obtain the analytical solution of the GL equation explicitly and use an
approximated form for the scalar field (given below in 8.6)). This form is used to solve the Ampere equation
exactly to obtain the analytical form for the gauge fidldand the resulting magnetic fiell This method does not
change the behavior of the gauge field in the long distance, but it gives a finite value for the gauge field even at th
origin. Therefore, we can obtain the formula which is valid for any distance (core radiusj the axis connecting
g andq: the profile of chromoelectric field in the dual superconductor is obtained:

® 1 Ko(R/A) 5
provided that the scalar field is given by (See the right panel afifig.
® 1
@(y) 4 (3.6)

= E‘[i\/é)\ 4r2+52)
wherekK, is the modified Bessel function of theth order,A the parameter corresponding to the London penetration
length, { a variational parameter for the core radius, @am@xternal electric flux. In the dual superconductor, we
define the GL parametaras the ratio of the London penetration lengthnd the coherence lengfhwhich measures
the coherence of the magnetic monopole condensate (the dual version of the Cooper pair condenadte):It is
given by 2]

K= V251 KEQE M) IKEE ), (3.7)

According to the formula E3(5), we estimate the GL parameterfor the dual superconductor &U(3) YM
theory, although this formula is obtained for the ordinary superconductdi bf gauge field. By using the fitting
function:

®1 1 ¢

1
ako(v/b?y? 4-¢2), a:ﬁﬁm> b:Xa C= (3.8)

E(y)
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we obtain the result shown in Table The superconductor is type | K < k¢, while type Il if K > K¢, where the
critical value of GL parameter dividing the type of the superconductor is givek.by 1/1/2 ~ 0.707. Our data
clearly shows that the dual superconducto8bf 3) Yang-Mills theory is type | with

k =0.454+0.01, A =0.1207+0.017fm, & =0.2707+0.086fm, (3.9)

where we have used the string tensmy,s = (440MeV)?, and data of lattice spacing is taken from the TABLE I in
Ref.[21]. This result is consistent with a quite recent result obtained independently by Cea, Cosmai ar@l/Papa [
Moreover, our result shows that the restricted part plays the dominant role in determining the type of the non-Abeliar
dual superconductivity of th8U(3) Yang-Mills theory, i.e., type | with

k =0.484+0.02, A =0.132+0.03fm, ¢ =0.277+0.014fm. (3.10)

This is a novel feature overlooked in the preceding studies. Thus the restricted-field dominance can be seen al
in the determination of the type of dual superconductivity where the discrepancy is just the normalization-of the
chromoelectric field at the conge= 0, coming from the difference of the total fluk. These are gauge-invariant
results. Note again that this restricted-field and the non-Abelian magnetic monopole extracted from it reproduce th
string tension in the static quark—antiquark potentia].[

Our result should be compared with the result obtained by using the Abelian projection: Y. Matsubaia5t. al [
suggestx = 0.5 ~ 1(which is 3 dependent), border of type | and type Il for b&HU(2) andSU(3). In SU(2) case, on
the other hand, there are other workd][which conclude that the type of vacuum is at the border of type | and type
[I. We should mention the work2] which concludes that the dual superconductivitysbf(3) Yang-Mills theory is
type Il with k = 1.2 ~ 1.3. This conclusion seems to contradict our result3bk3). If the above formula3.5) is
applied to the data oPk], we have the same conclusion, namely, the type | with 0.47 ~ 0.50. Therefore, the data
obtained in[R€] are consistent with ours. The difference between type | and type Il is attributed to the way of fitting
the data with the formula for the chromo-field.

4. Summary and outlook

We have given further numerical evidences for confirming the non-Abelian dual superconducti@ty 8ryM
theory proposed inll7]. For this purpose, we have used our new formulatioSdf3) YM theory on a lattice/, (7]
to extract the restricted field from the origirall(3) YM field, which has played a dominant role in confinement of
guarks in the fundamental representation, i.e., the restricted-field dominance and the non-Abelian magneticmonopo
dominance in the string tension, as shown in the previous stutiigs [

We have focused on the dual Meissner effect and have measured the chromoelectric field connecting a quark al
an antiquark for both the original YM field and the restricted field. We have observed the dual Meissner StE8)in
YM theory, i.e., only the chromoelectric field exists and the magnetic-monopole current is induced around the flux
connecting a quark and an antiquark. Moreover, we have determined the type of non-Abelian dual superconductivity
i.e., type | forSU(3) YM theory, which should be compared with the border of type | and Il for the SU(2) YM
theory. These features are reproduced only from the restricted part. These results confirm the non-Abelian dui:
superconductivity picture for quark confinement.
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