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ball, i. e., to a bound-state formed by gluonic ingrediently.o It has quantum numbers-0
and its mass, as predicted by different theoretical apemds expected to lie between 1 and
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integral in the complex plane of the outer integration Jalda We deal with this problem by de-
forming the outer integration contour accordingly. Fofetiént input gluon propagators we find a
positive glueball spectral density which is required foygibal states. Poles are, however, absent
which is most likely an artifact of working at Born level.

Xth Quark Confinement and the Hadron Spectrum,
October 8-12, 2012
TUM Campus Garching, Munich, Germany

*Speaker.

(© Copyright owned by the author(s) under the terms of the Cre&@vmmons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



On the Analytic Structure of Scalar Glueball Operators Andreas Windisch

1. Introduction

As color-carrying states gluons do not appear as asymptotic physited.stdney are confined
to observable color singlet objects by some mechanism, see, e. g., [1}lfariareview. In pure
Yang-Mills theory the only possibility to generate color neutral — and thusrohble — states is to
combine several gluons to form a bound state, a glueball. Experimentajharta&ery hard to find
due to mixing with mesonic states. On the theoretical side, several appsdactgtuonic bound
states are available, see, for instance, [2] for a recent review.

In the following we calculate the correlator of a0glueball candidate and determine its ana-
lytic properties [3] from which we can extract the spectral density. Fdnyaically observable state
the spectral density must be positive in order to allow a probabilistic intetjmet@, 5]. Thus,
the detection of positivity violations indicates that a certain state is expelledtfe@rasymptotic
state space (and in this sense confined), while the converse doeddhoebessarily. Glueballs
must therefore possess a positive spectral density, although thetitwents may not. Indeed, pos-
itivity violations of gluons are established in the Landau gauge from latticé][&nd functional
calculations [8, 9].

As a first approximation we take into account only the Abelian part of the $tedshgth tensor.
This simplifies the calculations in several respects. For example, renortitadizeould become
more complicated but the required machinery is available [10]. Howeveintut we use was
obtained from full Yang-Mills theory and therefore contains interactidmshe following we will
use two different fits for the gluon propagator and calculate the gluetna#lator numerically. In
simple cases this is also possible analytically, see, e. g. [11, 12]. Foe fapplications a numeric
procedure is certainly advantageous as it allows, for instance, to wsewaiterical data as became
available only recently [13].

The calculation of the correlator boils down to a two dimensional integral. Swecsonsider
complex external momenta, an additional subtlety arises: The inner integdsl te non-analytic
structures, like branch cuts, in the complex plane of the outer integrati@bieawhich have to be
taken into account properly. We do this here by deforming the integratiotogn i. e., also the
radial integration variable becomes complex. This method is already kneenfas example, [8],
but in the present case the structure of the arising non-analyticities isi@gptedious as detailed
below.

The two gluon propagator fits we employ here are of the decoupling [14619, 17] and scal-
ing type [18]. For the former we use a fit to lattice data motivated by the re@mgbv-Zwanziger
scenario (RGZ) [19]. For the chosen parameter values it possessesitplex conjugate poles.
Note that other fits, for instance, in [20], were suggested as well, butohtteem are special cases
of the used one. For the scaling type propagator we use a fit to the soléiiddyson-Schwinger
study [8]. It has a branch cut on the negative real axis.

2. Some Prerequisites
We consider the correlator of a candidate for a scalar glueball with guamimbers 6,

(F2(0F%(0))a = (F2, () F (X Fpo (0)F a5 (0))a, (2.1)



On the Analytic Structure of Scalar Glueball Operators Andreas Windisch

whered is the space-time dimension aRg, (x) is, as part of our approximation, just the Abelian
part of the Yang-Mills field-strength tensor given by

We are interested in the momentum space representation of this correlator,

. ~d )
(F2(x)F2(0)>d:/ (gn';de'p-Xﬁd(pZ). (2.3)

The desired expressiofiy(p?), reads [12]

d
GuliP) =80 1) [ 55 (4((p— KA P—k+ (@ -2k (—)). (24

For a transverse gluon propagator we have

PuP
D7) = (8~ 0 ) 4 (), 25)
where only the scalar pa#t(p?) enters the expression (2.4). A further complication we have not
addressed so far is the fact that in 4 Euclidean space time dimensions, tpalig given in

eq. (2.4) diverges like- p*. To render the integral finite we employ the BPHZ renormalization,
i. e., we Taylor subtract the divergent terms:

2 0° 4 0

P o 0P| =P 5 a(P)]| (2.6)

04(p%) = O4(p®) — 04(0) —
The odd derivatives vanish because of the anti-symmetry of the angtdgrah In order to obtain
the analytic structure of the scalar glueball correlator, we have to sol2.6yfor complex values
of the square of the external momentum. The spectral density is then ibteégsevaluating the
discontinuity of the branch cut along the negative real axis. For the tirt-functionA(p?) of a
given spin zero operata@p, the spectral density reads

p(P) = 5 lim [A(~p2 —i£) ~A(~p +ic) @7)

and the spectral representation of the two-point function is

d
A(pz):/(gn;)del /0 ar s T+z (2:8)

if no poles or cuts except for time-like momenta existis the multi-particle threshold.

Eqg. (2.4) holds for arbitrary dimensions. Here we consider dniy4. The two-dimensional
case, which of course has a trivial glueball spectrum, served as eatestor the development of
the numerics and is presented together with the four-dimensional resulis in [3
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3. TheMethod

The algorithm we use here is described in detail in [21], where as an éxahgpanalytical
results from [12] were reproduced. Let us consider the case of @¥gRopagator fit of [19],

2
2 pc+s
= —_— . .1
I =Coi o (3.1)
The fit-parameters ae= 2.508 Ge\?, t = 0.72Ge\?, u = 0.768 GeV andC = 0.784 [19]. In [21]
the following steps are given in order to evaluate the integral (2.4):

e STEP 1:Express (2.4) in hyper-spherical coordinates

_ 8 e ! X+Y—2yX\/yZ+S
64()()_?/0 dy y/_ldzm(ﬁy—z\/)?ﬂz)“rUZ(XJFY—ZWWZ)+t2
< e Y- 2AIY Ry @2)

wherex = p?, y=k? andp-k = /X,/yz

e STEP 2:Renormalization
The integral (3.2) diverges quadraticallyxnThe renormalized expression is given by (2.6).

e STEP 3:Analytic continuation
For the present case this step can be performed either analytically orioallgeForx € C
the inner integral of eq. (3.2) can produce an integrable singularity tegeith the rest of
the integrand. Whenruns through its integration intervgt 1, 1|, it picks up a whole line of
these singular points resulting in a branch cut in the complex plane of the irgdgration
variabley. Thus the contour of the radial integral has to be deformed in order id v
cut. For eq. (3.2) we find two branch cuts as well as a pair of complex gatgwpoles. The
branch cuts, parametrized kyin they-plane can be determined analytically by finding the
zeroes of the integrand of eq. (3.2) for a gives C. We compared these results with a
numerical integration. For= —2+ 2i both are shown in Fig. 1.

Itis clearly visible in Fig. 1 that the deformation of the contour of ykiategration, required
to connecly = 0 toy = &2 where is a UV cutoff, can be quite tricky. In general the open
piece between the branch cuts always points in the direction afArghus, ifx is on the
positive real axis, the integration is straightforward sigagan be kept real as well. Now
let us consider a complex= (r, @) by keepingr fixed while 0< ¢ < 11/2. There are no
poles in the first quadrant, and the opening of the branch cuts alwayssipohe direction

of Arg(x), thus the contour can be deformed continuously in that case. The same is tru

for the fourth quadrant. However, the complex conjugate poles of theramddocated in
the quadrants Il and Ill require more care. Obviously the contouratdom deformed as
easily for Arg pii) > Arg(x) > Arg(pii ), wherep,; and py;; are the pole locations in the
second and third quadrants, respectively. For some valuethefbranch cut end points are
narrowing down the area for a possible contour, see Fig. 2. Whendpo# of a branch
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Figure 1. Left: Analytic results for the branch cuts and poles in the compiplane forx = —2+ 2i. Right:
Numerical verification of the analytic result.
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Figure2: Left: The region for possible contours narrows dowss —2. Right: x= —1.18+2.7i. The same
situation occurs fok = —1.18— 2.7i, with the cuts flipped around the real axis.

cut coincides with one of the poles, the contour cannot be deformed gously and a non-
analyticity arises in the integral. In [3] we confirmed that for all points wheietitappens a
branch point is also predicted from the Cutkosky rules [22].

There are two further steps which we omit here as they are purely tethidaat is relevant
here is that the complex conjugate poles together with the two branch cutglgawstrict the
possibilities for the contour deformation. It is hard to obtain stable resultsoimplex values of
x when the argument of coincides with the argument of one of the pole locations. As discussed
in the next section, we find three branch cuts for the RGZ case, one tlengegative real axis,
and two along the directions Afpy ) and Arg pyi ). The numerical determination of the branch
points in this case is very troublesome, becausefaalues close to the cuts in theplane the
contour necessarily always comes very close to the cuts iy-filane what leads to numerical
artifacts. Even though the scaling propagator of [8] has a branciduha integrand induces two
more cuts in thg-plane, the absence of poles allows a continuous contour deformatiofusva
very close to the negative real axis. The results for the scaling propaa@ thus not plagued by
numerical issues.
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Figure 3: Left: The imaginary part of the scalar glueball correlator withARguons as inputRight: The
real part of the correlator.

4. Results

4.1 Decoupling

In the previous section we already discussed several aspects of thpre@agator as gluonic
input. Most importantly, we confirmed the location of the branch points knoam the Cutkosky
rules. Fig. 3 shows the imaginary and real parts of the correlator. The tianch cuts are clearly
visible. The two 'unphysical’ ones open very slowly. The extracted discaity of the 'physical’
branch cut is depicted in fig. 4. It becomes negative for small valuegpdfand rises earlier than
expect from the Cutkosky analysis. From investigating the complex platie g&dial integration
variable we know that these phenomena are numerical artifacts whichpeeteo vanish if the
contour deformation is better tuned; see [3] for a more detailed discuSdiois.we conclude that
the spectral density is positive.
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Figure 4: The discontinuity of the physical branch cutft: Decoupling gluonsRight: Scaling gluons.
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Figure5: Left: The imaginary part of the scalar glueball correlator witalsg gluons as inputRight: The
real part of the correlator.

4.2 Scaling

The IR part of the scaling gluon fit is given by [8],

g0 —wk (7 )" 4.1
(p)_Wp2<p2+/\2> ; (4.1)
with k =0.595353. The exponent leads to a branch cut of the propagatonfgier momenta. We
neglected the UV part of the propagator fit, which involves a logarithm, agrevenly interested
in IR relevant parts of the propagator. The other parametens ar@.5 andA = 0.51 GeV.

Fig. 5 shows the imaginary and the real parts of the correlator. Since #inereo non-
analyticities besides the branch cut on the negative real axis, a Kallimdren representation
is possible. The corresponding positive spectral density is depicted #h filye also observe that
in this case the evaluation of the correlator in the complex plane is not plaguednierical ar-
tifacts. Strictly speaking the Cutkosky analysis is in this case not applicabte, the employed
propagator does not have the required form. However, a naive apptideads to a threshold in
precise agreement with our numeric result.

5. Summary

In this work we studied the analytic properties of a scalar glueball correlaBorn-level. The
self-interaction of gluons entered via using non-perturbative gluopggator fits. These exhibit
positivity violations and describe thus confined gluons. The resulting gluetrrelators have a
branch cut for time-like momenta and no poles. The extracted spectratieerse positive as
required for a physical state. For the fit of the decoupling propagatalgo find two unphysical
cuts which are due to the analytic structure of the fit. Possible continuatidnglénthe addition
of higher order terms and the use of numerical results for the propaigatioe complex plane.
The employed techniques for the evaluation of the integrals may be useaihfr studies, where
complex momenta are involved, as well.
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