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1. Introduction

The physical excitations in pure SU(N) Yang-Mills theory are color singlet glueballs [1]. There
are various predictions for the glueball spectrum from different approaches [2, 3, 4, 5, 6], making
glueballs theoretically well-established. Experimentally, however, these states are difficult to iden-
tify since they mix with states containing pairs of quarks and antiquarks. The clarification of the
unquenched glueball spectrum is therefore a prime theoretical task. Glueballs in pure Yang-Mills
theory are, on the other hand, of considerable theoretical interest since they reflect the mass gap in
the ’physical’ spectrum of the theory. In this work we reporton first results on this issue from the
Dyson-Schwinger/ Bethe-Salpeter framework [7, 8].

In a linear covariant gauge, glueballs are bound states involving gluon and ghost degrees of
freedom. In the simplest case this amounts to a superposition of a two-gluon bound state with a
ghost-antighost component, which can be described by coupled set of Bethe-Salpeter equations.
Key ingredients to such kind of approach are the non-perturbative propagators of the constituents
at general complex momenta.

The non-perturbative complex gluon propagator is of courseinteresting in its own right. Color
confinement is understood to be the absence of colored asymptotic states. Then a sufficient criterion
for color confinement is a positivity violating spectral density. In a recent work [9] first numerical
results for the propagators in the complex plane have been reported and negative contributions in the
spectral functions have indeed been found confirming earlier evidence from Schwinger functions
[10, 11].

This contribution is organized as follows: in the next section the Dyson-Schwinger equations
(DSEs) for the ghost and gluon propagators and the ansaetze for the higher vertex functions are
specified. In section 3 the well-known Euclidean solution isextended to complex momenta. Fi-
nally, a system of Bethe-Salpeter equations (BSEs) for glueballs as bound states of two gluons
or two ghosts is sketched in the following section. We reporta preliminary result for the lowest
glueball mass, the 0++ state.

2. Yang-Mills Dyson-Schwinger equations

In Landau gauge, the gluon and Faddeev-Popov ghost propagators are given by

Dµν(p) =

(

δµν −
pµ pν

p2

)

Z(p2)

p2 ,

DG(p) = −
G(p2)

p2 , (2.1)

with the gluon dressing functionZ(p2) and the ghost dressing functionG(p2). These are deter-
mined from their DSEs given diagrammatically in Fig. 1. The propagator DSEs are the lowest
members of an infinite tower of coupled equations describingthe one-particle irreducible Green’s
functions of a theory. In order to close the system at hand, one needs to specify the dressed ghost-
gluon, three-gluon and four-gluon vertices appearing in the loops on the right hand side of the
equations. Currently there is great activity to include thevertex DSEs in the picture either from
explicit calculations [12] or from systematic variations of ansaetze for the vertices explored on the
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Figure 1: The Dyson-Schwinger equations for the ghost and gluon propagator in Landau gauge.
Euclidean gluon dressing function compared with the lattice results of [13].

level of the propagator DSEs [14, 15]. In this work we use the vertex ansaetze from Ref. [16] which
explicitly read

Γµ(p,q) = Γ(0)
µ = iqµ

,

Γµνρ(p,q) =
1
Z1

G−2a(q2)

Za(q2)

G−2a((p−q)2)

Za((p−q)2)
Γ(0)

µνρ , (2.2)

whereΓ(0) are the tree-level vertices anda is related to the (perturbative) anomalous dimension
of the ghost propagator. It is well known that this tree-level ansatz for the ghost-gluon vertex
is a good qualitative approximation to the full ghost-gluonvertex [17, 18]. The ansatz for the
three-gluon vertex reproduces, by construction, resummedperturbation theory in the ultraviolet.
Furthermore, contributions from the four-gluon vertex areneglected here (see however [19] for
first results on the inclusion of the sunset diagram (b) in theleft panel of Fig. 1). When compared
with lattice calculations, the resulting solutions of the ghost-gluon system agree perfectly in the
infrared and ultraviolet momentum region and deviate on the20 percent level in the intermediate
momentum regime, see the right panel of Fig. 1. There is also an active discussion on the deep
infrared behavior of the gluon and ghost propagators. Two types of solutions, the scaling and
decoupling one have been identified, which correspond to an infrared vanishing or finite gluon
propagator [11, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. In the following we focus on the
decoupling solution.

3. Analytic Structures of Gluons and Ghosts

Traditionally, non-perturbative results of the gluon propagators have been limited to the space-
like momentum region, i.e. all computation have been done inEuclidean space-time for positive
real squared momenta. Recovering the propagator also for time-like momenta requires either an-
alytic continuation or solving the Yang-Mills DSE in the complex p2 momentum plane. In [10]
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Figure 2: (Panel a) Results for the real part of the gluon propagator functionD(p2). (Panel b)
Results for the imaginary part of the gluon propagator function D(p2) [9]. The figures include
colored contour maps and lines. The displayed range of the gluon propagator is restricted in order
to resolve smaller structures.

the first method has been used and fit functions to the Euclidean propagators haven been contin-
ued analytically to complex momenta. In the case of the technically simpler fermion DSE, several
methods for obtaining a numerical solution in the complex momentum plane have been devised in
the past [31, 32]. In [9] the former method has been applied tothe Yang-Mills DSEs for the first
time.

The Figures 2 and 3 show the complex gluon propagator and the complex ghost dressing
function, respectively [9]. Notice that both propagators have branch cuts, starting at the origin along
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Figure 3: (Panel a) Results for the real part of the ghost dressing functionG(p2). (Panel b) Results
for the imaginary part of the ghost dressing functionG(p2) [9]. The figures include colored contour
maps and lines.

the negative real axis and extend to infinity. For the ghost propagator the branch cut is singular at
zero. Moreover, the gluon propagator is highly peaked at certain regions of the complex plane
but, within the present numerical accuracy, shows no additional singularities besides the branch
cuts. This observation is in contrast to the suggested analytically forms for the gluon propagator
in the literature [33, 34, 35, 36, 37], which all assumed poles in the complex plane away from the
real momentum axis. From our result we see no justification for these assumptions. Our result
has a simple interpretation: the branch cuts correspond to the radiation of (massless) ghosts and
gluons from the gluon via the ghost-gluon and three-gluon vertex couplings. Due to the positivity
violations in the gluons and ghosts this radiation is one of unphysical particles into unphysical
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particles leaving no traces in the physical part of the statespace of the theory. This part is occupied
by the color-singlet glueball states discussed in the next section.

4. Scalar Glueball

Both DSEs and Bethe-Salpeter equations can be derived taking functional derivatives with
respect to the propagators of a two-particle irreducible effective action (2PI EA) [38]. The general
form of the 2PI EA is

Γ[D,DG] =
1
2

Tr ln D0D−1+
1
2

TrD−1
0 D−Trln DG0D−1

G −TrDG
−1
0 DG+Γ2[D,DG], (4.1)

whereD andDG are the full gluon and ghost propagators andD0, DG0 are their tree-level counter-
parts. Assuming the interactionΓ2 diagrammatically as

Γ2[D,G] =−
1
12

+
1
2

, (4.2)

one finds the one loop DSEs for the ghosts and gluons, as discussed in Section 2. Applying two
functional derivatives to (4.1) (while treating the vertices as explicit input) and demanding the
two-particle onshell conditions provides the glueball BSEs

δ 2Γ
δSδS

γ = 0, (4.3)

whereSstands for either the gluon or the ghost propagator andγ is the Bethe-Salpeter amplitude.
After introducing the modified Bethe-Salpeter amplitudesχ = S−1γS−1 one finds the following
coupled system of BSEs for ghost and gluon bound states

D = D −2 G + l , (4.4)

G = D + G + l, (4.5)

where the double arrow means symmetrization with respect tothe dressed vertices. Note that the
dressed vertices in the BSEs are the same as in the DSEs Eq. (2.2). Additionally, once the phys-
ical scale in the propagator equations is fixed there is no further adjustment of scales or coupling
constants in the BSEs possible.

The scalar glueball gluon amplitude has the covariant representation

χ µν
0++(P, p) = AD(p

2
, p·P)gµν

, (4.6)

whereAD denotes the dressing function. While the decomposition of glueball ghost amplitude
reads

χ0++(P, p) = AG(p
2
, p·P), (4.7)
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whereP2 = M2
G with MG being the glueball mass. Putting all ingredients together and solving

the system of BSEs numerically we find a preliminary value formass of the scalar glueball with
PC=++ of the order of

m0++ = 1.8 GeV. (4.8)

This result is in good agreement with findings from other approaches like lattice gauge theory
[2, 3], Coulomb gauge Hamiltonians [4], Regge theory [5] andpotential models [6].

5. Conclusions

In this contribution we have presented an approach to the glueball spectrum based on the BSE.
These BSEs are a coupled system of equations describing glueballs as bound state of two gluons
and two ghosts. As a first result the mass of the lowest scalar glueball was determined in agreement
with several other theoretical approaches. A detailed account of our approach will be subject of a
forthcoming publication [39].

Furthermore we summarized the results of [9] for the complexgluon and ghost propagators
obtained by solving the corresponding DSEs for complex momenta. The complex dressing func-
tions have no singularities besides branch cuts along the negative real axis. We do not observe
pole singularities on the first Riemann sheet in the gluon propagator that are expected from the
Gribov-Zwanziger approach or its modern counterparts. Both propagators have positivity violating
spectral functions and allow no particle interpretation ofgluons or ghosts as asymptotic states of
the theory.
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