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1. Introduction

The physical excitations in pure SU(N) Yang-Mills theorg aplor singlet glueballs [1]. There
are various predictions for the glueball spectrum fromedéht approaches [2, 3, 4, 5, 6], making
glueballs theoretically well-established. Experimdgtdiowever, these states are difficult to iden-
tify since they mix with states containing pairs of quarksl amtiquarks. The clarification of the
unquenched glueball spectrum is therefore a prime theatddsk. Glueballs in pure Yang-Mills
theory are, on the other hand, of considerable theoretitatdst since they reflect the mass gap in
the 'physical’ spectrum of the theory. In this work we repomtfirst results on this issue from the
Dyson-Schwinger/ Bethe-Salpeter framework [7, 8].

In a linear covariant gauge, glueballs are bound statedvimgpgluon and ghost degrees of
freedom. In the simplest case this amounts to a superposifia two-gluon bound state with a
ghost-antighost component, which can be described by edug#t of Bethe-Salpeter equations.
Key ingredients to such kind of approach are the non-peativd propagators of the constituents
at general complex momenta.

The non-perturbative complex gluon propagator is of coumsgesting in its own right. Color
confinement is understood to be the absence of colored astiogtates. Then a sufficient criterion
for color confinement is a positivity violating spectral déy. In a recent work [9] first numerical
results for the propagators in the complex plane have bgemtezl and negative contributions in the
spectral functions have indeed been found confirming ealielence from Schwinger functions
[10, 11].

This contribution is organized as follows: in the next sattihe Dyson-Schwinger equations
(DSEs) for the ghost and gluon propagators and the ansamtzkef higher vertex functions are
specified. In section 3 the well-known Euclidean solutioextended to complex momenta. Fi-
nally, a system of Bethe-Salpeter equations (BSESs) forbglle as bound states of two gluons
or two ghosts is sketched in the following section. We repoptreliminary result for the lowest
glueball mass, the 0" state.

2. Yang-Mills Dyson-Schwinger equations

In Landau gauge, the gluon and Faddeev-Popov ghost prapagat given by
PuPv Z(p%)
) P
, (2.1)

)

Duv(p) = (5;1\/—

2
Da(p) = —LFZ))
p

with the gluon dressing functioi(p?) and the ghost dressing functi@® p?). These are deter-
mined from their DSEs given diagrammatically in Fig. 1. Thegagator DSEs are the lowest
members of an infinite tower of coupled equations descrilfiegone-particle irreducible Green'’s
functions of a theory. In order to close the system at hand n@eds to specify the dressed ghost-
gluon, three-gluon and four-gluon vertices appearing & ltdops on the right hand side of the
equations. Currently there is great activity to include ¥ieetex DSESs in the picture either from
explicit calculations [12] or from systematic variatiorfsansaetze for the vertices explored on the
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Figure 1: The Dyson-Schwinger equations for the ghost andrgpropagator in Landau gauge.
Euclidean gluon dressing function compared with the lattesults of [13].

level of the propagator DSEs [14, 15]. In this work we use thitex ansaetze from Ref. [16] which
explicitly read
Mu(p.g) =Y =ig",

1 G %) G *((P—9*) 0

_ G—((
Twe(PO) = 2 Za@) Za((p_q?) M 2

wherel© are the tree-level vertices amdis related to the (perturbative) anomalous dimension
of the ghost propagator. It is well known that this tree-lemasatz for the ghost-gluon vertex
is a good qualitative approximation to the full ghost-gluartex [17, 18]. The ansatz for the
three-gluon vertex reproduces, by construction, resumpeetiirbation theory in the ultraviolet.
Furthermore, contributions from the four-gluon vertex aeglected here (see however [19] for
first results on the inclusion of the sunset diagram (b) indftepanel of Fig. 1). When compared
with lattice calculations, the resulting solutions of thHeogt-gluon system agree perfectly in the
infrared and ultraviolet momentum region and deviate or2th@ercent level in the intermediate
momentum regime, see the right panel of Fig. 1. There is aisactive discussion on the deep
infrared behavior of the gluon and ghost propagators. Twpesyof solutions, the scaling and
decoupling one have been identified, which correspond tofrared vanishing or finite gluon
propagator [11, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. hinfollowing we focus on the
decoupling solution.

3. Analytic Structures of Gluonsand Ghosts

Traditionally, non-perturbative results of the gluon pagptors have been limited to the space-
like momentum region, i.e. all computation have been dorteudidean space-time for positive
real squared momenta. Recovering the propagator alsonferlike momenta requires either an-
alytic continuation or solving the Yang-Mills DSE in the cphax p> momentum plane. In [10]
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Figure 2: (Panel a) Results for the real part of the gluon @gapor functionD(p?). (Panel b)
Results for the imaginary part of the gluon propagator fiancD(p?) [9]. The figures include
colored contour maps and lines. The displayed range of tiengbropagator is restricted in order
to resolve smaller structures.

the first method has been used and fit functions to the Eudligeapagators haven been contin-
ued analytically to complex momenta. In the case of the tiealip simpler fermion DSE, several
methods for obtaining a numerical solution in the complexmantum plane have been devised in
the past [31, 32]. In [9] the former method has been appligtieéovang-Mills DSEs for the first
time.

The Figures 2 and 3 show the complex gluon propagator anddimplex ghost dressing
function, respectively [9]. Notice that both propagatasdnbranch cuts, starting at the origin along
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Figure 3: (Panel a) Results for the real part of the ghossiligsunctionG(p?). (Panel b) Results
for the imaginary part of the ghost dressing funct@®(p?) [9]. The figures include colored contour
maps and lines.

the negative real axis and extend to infinity. For the ghospggator the branch cut is singular at
zero. Moreover, the gluon propagator is highly peaked aateregions of the complex plane
but, within the present numerical accuracy, shows no amfditi singularities besides the branch
cuts. This observation is in contrast to the suggested &ecelly forms for the gluon propagator
in the literature [33, 34, 35, 36, 37], which all assumed patethe complex plane away from the
real momentum axis. From our result we see no justificationttfese assumptions. Our result
has a simple interpretation: the branch cuts corresponietoadiation of (massless) ghosts and
gluons from the gluon via the ghost-gluon and three-gluatexecouplings. Due to the positivity
violations in the gluons and ghosts this radiation is one rmgfhysical particles into unphysical
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particles leaving no traces in the physical part of the stpéee of the theory. This part is occupied
by the color-singlet glueball states discussed in the restian.

4. Scalar Glueball

Both DSEs and Bethe-Salpeter equations can be derivedgtéiirctional derivatives with
respect to the propagators of a two-particle irreducibiecéifre action (2PI EA) [38]. The general
form of the 2PI EA is

1 1
r(D,Dg] = ETrln DoD 1+ ETrD(;lD —Trin DgoDg! — TrDgy *Dg + M2[D, Dgl, (4.1)

whereD andDg are the full gluon and ghost propagators &l Dgg are their tree-level counter-
parts. Assuming the interactidrp diagrammatically as

(4.2)

one finds the one loop DSEs for the ghosts and gluons, as detus Section 2. Applying two
functional derivatives to (4.1) (while treating the veeicas explicit input) and demanding the
two-particle onshell conditions provides the glueball BSE

or

3S3S
whereS stands for either the gluon or the ghost propagatorjaisdhe Bethe-Salpeter amplitude.
After introducing the modified Bethe-Salpeter amplituges: StyS~ one finds the following
coupled system of BSEs for ghost and gluon bound states

=® ¢ +1 (4.4)
/. @ -
A \} @)
° ) +=® § + 1, (4.5)
<O hﬁl - -.' ......

where the double arrow means symmetrization with respeittetaressed vertices. Note that the
dressed vertices in the BSEs are the same as in the DSEs E). A2lditionally, once the phys-
ical scale in the propagator equations is fixed there is nbduradjustment of scales or coupling

constants in the BSEs possible.
The scalar glueball gluon amplitude has the covariant sgpr@tion

x£ (P p) = Ao(p?, p-P)g", (4.6)

where Ap denotes the dressing function. While the decompositionlwélmall ghost amplitude
reads

y=0, (4.3)

XO**(R p) = AG(p27 p- P)v (47)
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whereP? = Mé with Mg being the glueball mass. Putting all ingredients togetimet solving
the system of BSEs numerically we find a preliminary valuenfiass of the scalar glueball with
PC= ++ of the order of

my++ = 1.8 GeV. (48)

This result is in good agreement with findings from other apphes like lattice gauge theory
[2, 3], Coulomb gauge Hamiltonians [4], Regge theory [5] potential models [6].

5. Conclusions

In this contribution we have presented an approach to trebgluspectrum based on the BSE.
These BSEs are a coupled system of equations describingajjsi@s bound state of two gluons
and two ghosts. As a first result the mass of the lowest schlabgll was determined in agreement
with several other theoretical approaches. A detailedwattcof our approach will be subject of a
forthcoming publication [39].

Furthermore we summarized the results of [9] for the complewn and ghost propagators
obtained by solving the corresponding DSEs for complex nmaeeThe complex dressing func-
tions have no singularities besides branch cuts along tgatine real axis. We do not observe
pole singularities on the first Riemann sheet in the gluompagator that are expected from the
Gribov-Zwanziger approach or its modern counterpartshipobpagators have positivity violating
spectral functions and allow no patrticle interpretatiorglfons or ghosts as asymptotic states of
the theory.
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