
P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
 
X
)
0
6
6

Effective spin models from the Yang-Mills action

J. Greensite∗

Niels Bohr International Academy, Blegdamsvej 17, DK 2100 Copenhagen Ø, Denmark
E-mail: greensit@stars.sfsu.edu

I present a method for finding the variation of the effective spin (or Polyakov line) action along

any path in the configuration space of effective spins, givenonly the action of the underlying

lattice gauge theory. The method can be applied, in principle, to extract the effective spin model

from the underlying gauge theory.

Xth Quark Confinement and the Hadron Spectrum,
October 8-12, 2012
TUM Campus Garching, Munich, Germany

∗Supported in part by the U.S. Department of Energy under Grant No. DE-FG03-92ER40711.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
 
X
)
0
6
6

Effective spin models

1. Introduction

The study of the QCD phase diagram at large baryon density calls for the introduction of a
quark chemical potential into the QCD Lagrangian. This results in an intrinsically complex action,
with the consequence that importance sampling, essential to all lattice Monte Carlo simulations,
can no longer be applied in a straightforward way. It is possible that one may get around the
problem by simulating instead the corresponding Polyakov line action.

The Polyakov line actionSP, also known as the “effective spin” action, is obtained fromthe
QCD actionSQCD by integrating out all degrees of freedom in the theory, under the constraint
that the Polyakov line holonomies are fixed. This gives us, inprinciple, aD = 3 dimensional
theory whose phase structure ought to parallel that of full QCD. The integration can be carried
out analytically at strong lattice couplings and heavy quark masses via the hopping parameter
expansion, to give an action of the following form:

SP = βP∑
x

3

∑
i=1

[TrU†
x TrUx+î +TrUxTrU†

x+î
]+κ ∑

x
[eµTrUx +e−µTrU†

x ] , (1.1)

The sign problem in this model seems relatively mild, for a wide range of parametersβP,κ ,µ , and
can be handled in a number of different ways. These include the “flux representation” [1], reweight-
ing [2], stochastic quantization [3], and mean field methods[4]. If we knew SP corresponding to
SQCD at realistic gauge couplings and light quark masses, and if the sign problem remains mild,
then in principle we could determine the phase diagram ofSQCD by computing the phase diagram
of SP. The first problem, however, is to findSP in the parameter range of interest. In this talk I will
discuss a novel approach to this problem; more details can befound in ref. [5].1

2. The relative weights approach

Consider QCD on anL3 ×Nt lattice volume, withµ = 0 for now. It is convenient to fix to
temporal gauge, with timelike links set to the unit matrix everywhere except on one timeslice, say
at t = 0. Then, by definition

exp
[

SP[Ux]
]

=

∫

DU0(x,0)DUkDψDψ
{

∏
x

δ [Ux −U0(x,0)]
}

eSQCD . (2.1)

Let us choose a set of “effective spin” configurations
{

{U (i)
x ,all x ∈V3}, i = 1,2, ...,M

}

. (2.2)

whereV3 is a three-dimensional lattice of volumeL3, and imagine restricting the timelike link
variables att = 0 to this set. Define the partition function

Z =

∫

DU0(x,0)DUkDψDψ
M

∑
i=1

{

∏
x

δ [U (i)
x −U0(x,0)]

}

eSQCD , (2.3)

1For alternative approaches based on (i) strong-coupling expansions, cf. [2]; and on (ii) the inverse Monte Carlo
method, cf. [6] and [7].
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and consider the ratio

exp
[

SP[U ( j)]
]

exp
[

SP[U (k)]
] =

∫

DU0(x,0)DUkDψDψ
{

∏x δ [U ( j)
x −U0(x,0)]

}

eSQCD

∫

DU0(x,0)DUkDψDψ
{

∏x δ [U (k)
x −U0(x,0)]

}

eSQCD

=

1
Z

∫

DU0(x,0)DUkDψDψ
{

∏x δ [U ( j)
x −U0(x,0)]

}

eSQCD

1
Z

∫

DU0(x,0)DUkDψDψ
{

∏x δ [U (k)
x −U0(x,0)]

}

eSQCD

, (2.4)

Both the numerator and denominator have the interpretationof a probability, i.e.

Prob[U ( j)] =
1
Z

∫

DU0(x,0)DUkDψDψ
{

∏
x

δ [U ( j)
x −U0(x,0)]

}

eSQCD (2.5)

is the probability that timelike links att = 0 are found to belong to thej-th member of the set (2.2).
Numerical simulation of the system described byZ is carried out by updating all degrees of

freedom in the usual way, except for the timelike links att = 0. These timelike links are updated
simultaneously, by choosing at random one of theM members of the set (2.2), and accepting or
rejecting it via the Metropolis algorithm. We keep track of the number of timesNn that then-th
member of the set is accepted, out of the totalNtot = ∑nNn. Then Prob[U (n)] = Nn/Ntot, in the limit
Ntot → ∞, and therefore

exp
[

SP[U ( j)]
]

exp
[

SP[U (k)]
] = lim

Ntot→∞

Nj

Nk
(2.6)

From this information we can either test any proposal forSP or, possibly, determineSP from the
data.

Let λ parametrize a pathUx(λ ) through the space of Polyakov line configurations. We can
use (2.6) to compute path derivativesdSP/dλ at λ = λ0. Let configurationU ( j)

x correspond to the
point atλ0+∆λ andU (k)

x to the point atλ0−∆λ . Then it follows, from (2.6), that
(

dSP[Ux(λ )]
dλ

)

λ=λ0

≈
1

2∆λ

{

log
Nj

Ntot
− log

Nk

Ntot

)

(2.7)

Numerical accuracy can be improved by choosing a set of configurations{U (n)
x =Ux(λn)} along

the path with

λn = λ0+

(

n−
M+1

2

)

∆λ , n= 1,2, ...,M , (2.8)

Then for sufficiently small∆λ we have
(

dSP[Ux(λ )]
dλ

)

λ=λ0

≈ slope of log
Nn

Ntot
vs. λn . (2.9)

Our long-term program is to first determineSP from SQCD atµ = 0. Then we obtainSP at finite
µ from the subsitutionUx → eNt µUx, U†

x → e−Nt µU†
x . From there, the idea is to solve the effective

spin theory by any of the means (flux representation, reweighting, stochastic quantization, mean
field) that have been suggested so far. The immediate goal, however, is to see if the relative weights
method can extractSP from the underlying lattice gauge theory, and this talk willconcentrate on
the simplest example of pure SU(2) gauge theory.
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Figure 1: (a) The slope of the straight-line fit to the data shown gives an estimate for the derivative
L−3dSP/da of SP with respect to the amplitude of spatially constant effective spin configurations. (b) A
plot of the values forL−3dSP/davs.P0. Each data point is extracted from a plot similar to (a). Alsoshown
are the corresponding strong-coupling values, and a best linear fit to the data points.

3. A test at strong coupling

The first question is whether the relative weights method canbe used to determineSP in a case
where the answer is known. Let us takeβ = 1.2, Nt = 4 in lattice SU(2) pure gauge theory.SP can
then be readily computed by strong-coupling character expansion methods:

SP =

[

1+4Nt

(

I2(β )
I1(β )

)4
]

(

I2(β )
I1(β )

)Nt

∑
x

3

∑
i=1

TrUxTrUx+î = βP∑
x

3

∑
i=1

PxPx+î , (3.1)

wherePx ≡
1
2TrUx and

βP = 4

[

1+4Nt

(

I2(β )
I1(β )

)4
]

(

I2(β )
I1(β )

)Nt

. (3.2)

The action can be divided into a potential and kinetic part

SP = KP+VP

KP =
1
2

βP∑
x

3

∑
i=1

(PxPx+î −2P2
x +PxPx−î)

VP = 3βP∑
x

P2
x , (3.3)

First we determineVP by relative weights. We choose the set of spatially constantconfigurations

U (n)
x = (P0+an)1+ i

√

1− (P0+an)2σ3

an =
(

n−
1
2
(M+1)

)

∆a , n= 1,2, ...,M , (3.4)

So in this casea is theλ parameter, and it is easy to see thatdSP/da= dVP/dP0. The data for
log(Nn/Ntot) vs L3(P0+ an) at P0 = 0.5 is shown in Fig. 1(a), and the slope of this line gives us
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Figure 2: Derivative of the action w.r.t. path parametera2 vs. squared lattice momentum. Data is taken at
strong gauge couplingβ = 1.2 for plane-wave deformations. Squares indicate the relative-weights values,
while green dots are the values obtained from the strong-coupling expansion.

L−3dVP/dP0. All data shown in this article was obtained atL = 12. Repeating the calculation for
various values ofP0 (Fig. 1(b)) we find thatdVP/dP0 is linear inP0. Integrating, and dropping an
irrelevant constant of integration, the result is

VP =











0.1721(8)∑x
1
2P2

x relative weights method

0.1710∑x
1
2P2

x strong-coupling expansion
, (3.5)

For the kinetic term, which by definition is zero for constantconfigurations, we choose a set
of small plane wave deformations of a constant background

U (n)
x = P(n)

x 1+ i
√

1− (P(n)
x )2σ3

P(n)
x = P0+ancos(k ·x) (3.6)

whereki = 2πmi/L are the components of the lattice wavevector, and it is convenient to choose
λn = a2

n in this case. We computeL−3dSP/d(a2) from the slope of log(Nn/Ntot) vsL3a2, at fixedk
andP0, with the result, at fixedP0 = 0.5 but different choices ofk, shown in Fig. 2, wherek2

L is the
usual (squared) lattice momentumk2

L = 4∑i sin2(ki/2). It follows thatL−3dSP/d(a2) =−Ak2
L +B,

and further simulations find that the constantsA,Bare independent ofP0. This information, together
with the knowledge of the potential, allows us to deduce the action SP (cf. [5] for details), and
compare with the strong-coupling result:

SP =











.0292(8)∑x ∑3
i=1 PxPx+î (relative weights method)

.0285∑x ∑3
i=1 PxPx+î (strong-coupling expansion)

(3.7)
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Figure 3: Derivatives of the potential. Subfigure (a) shows the best fitto the data by a polynomial
aP+bP2+ cP3, while subfigure (b) shows a best fit by polynomials with two, three, and four odd pow-
ers ofP, which are forms that might be expected from unbroken centersymmetry.

4. The potential term at weaker couplings

Our convention is that the potential term is local, while thekinetic term vanishes for spatially
constant configurationsU . In that case

VP = ∑
x

V (Ux) and V (U) =
1
L3SP(U) (4.1)

andKP = SP −VP by definition. To compute the potential defined in this way, weonly need to
compute the variation ofSP with respect to the amplitude of spatially constant configurations. As
at strong coupling, we choose the set (3.4) and computeL−3dSP/da= L−3dVP/P0, but this time we
work at a weaker couplingβ = 2.2,Nt = 4, which is still in the confined phase, and fit the result to
a polynomial inP0. The result is shown in Fig. 3(a), and the data is nicely fit by acubic polynomial
c1P0+c2P2

0 +c3P3
0 .

At first sight this result would seem to violate center symmetry, which for SU(2) requires that
VP(P) = VP(−P), and therefore the derivative should be an odd function ofP, which would rule
out the quadraticc2P2

0 term. On the other hand, fits to the data using only odd powers of P0 are
not very good, as we see in Fig. 3(b). The fit improves as more terms are added; it is, however, a
little like fitting a step function with a truncated Fourier series. But in fact the quadratic term does
not violate center symmetry, because simulations atP0 < 0 find that the quadratic term is actually
c2P2

0 × sign(P0), and therefore, upon integration we find a center symmetric,albeit non-analytic,
potential

VP = ∑
x

(1
2

c1P2
x +

1
3

c2|Px|
3+

1
4

c3P4
x

)

(4.2)

5. Towards the kinetic term

We consider two different sets of configurations. Type I willbe small plane wave deforma-
tions on a constant background (3.6), as in the last section.Type II will simply be plane wave

6
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configurations

U (n)
x = P(n)

x 1+ i
√

1− (P(n)
x )2σ3

P(n)
x = Ancos(k ·x)

An = A0+
(

n−
1
2
(M+1)

)

∆A , n= 1,2, ...,M (5.1)

For Type I thea-dependence begins atO(a2) and we again computedSP/d(a2), but unlike the
strong-coupling case the result does depend onP0. For Type II configurations, we computedS/dA.

It turns out that an expression forSP which seems to fit the data from Type I and Type II
configurations has the form

SP = 2c

{

∑
xy

Px

(

√

−∇2
L +gP2

av+g′∆P2
)

xy
Py −∑

x

√

gP2
av+g′∆P2P2

x

}

+∑
x

(1
2

c1P2
x +

1
3

c2|P
3
x |+

1
4

c3P4
x

)

(5.2)

where

Pav =
1
L3 ∑

x
Px and ∆P2 =

1
L3 ∑

x
(Px−Pav)

2 (5.3)

The data (red) and best fits (green) to the data for Type I and Type II configurations are shown in
Figs. 4(a) and 4(b) respectively. The constantsc1,c2,c3 match the constants already determined
for the potential. Although this action has been derived from data at very special (Type I and II)
configurations, it is natural to conjecture, based on the success of this strategy at strong couplings,
that (5.2) holds throughout the field configuration space.

6. Conclusions

The relative weights method for deriving the Polyakov line action has been tested at strong
lattice couplings, where the answer known, and the method works well in that case. At a weaker
couplingβ = 2.2, Nt = 4 for pure SU(2) lattice gauge theory, where the Polyakov line action is not
really known, a conjecture for the full action has been presented.

However, this conjecture comes with a strong caveat. The relative weights technique computes
path derivatives of the Polyakov line action at any point along a path in the field configuration space,
and the actionSP has to be deduced from that information. In the present case these derivatives
have been computed only at very special points in configuration space, and these points are quite
atypical, when compared to the thermalized Polyakov line configurations that would be generated
in the course of a standard lattice Monte Carlo finite temperature simulation. The approximate
form that the action takes at such special points cannot be guaranteed to hold in the more general
situation. Therefore it is crucial to test the proposed action in other, more typical, regions of field
configuration space. If the form (5.2) of the action survivesthis test, then the next check would
be to compute an observable such as the Polyakov line correlator, to see if it agrees with the same
quantity computed in the underlying lattice gauge theory. Ihope to report on the results of these
studies in the near future.
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Figure 4: Derivatives ofSp for Type I and Type II configurations. Red crosses are data points, and the green
surface is a best fit to the data derived from the analytic form(5.2). (a) Type I configurations:L−3dS/d(a2)

vs. lattice momentumkL and Polyakov lineP0. (b) Type II configurations: Variation of the effective action
with plane wave amplitude,L−3dSP/dA evaluated atA= A0, for Polyakov line configurations proportional
to plane wavesPx = Acos(k ·x), as a function ofA0 and lattice momentumkL.
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