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1. Introduction

The study of the QCD phase diagram at large baryon density foalthe introduction of a
guark chemical potential into the QCD Lagrangian. Thislteso an intrinsically complex action,
with the consequence that importance sampling, esseatall tattice Monte Carlo simulations,
can no longer be applied in a straightforward way. It is daesthat one may get around the
problem by simulating instead the corresponding Polyakav adction.

The Polyakov line actioi®p, also known as the “effective spin” action, is obtained frtiva
QCD actionSycp by integrating out all degrees of freedom in the theory, urttle constraint
that the Polyakov line holonomies are fixed. This gives usprinciple, aD = 3 dimensional
theory whose phase structure ought to parallel that of fi@@DQ The integration can be carried
out analytically at strong lattice couplings and heavy Buaasses via the hopping parameter
expansion, to give an action of the following form:

3

S=5Y _Zl[TrUXT TrUy i+ TV ]+ K S [ TrUc+e *Try]] (1.1)

X 1= X

The sign problem in this model seems relatively mild, for deviange of parametefp, K, U, and
can be handled in a number of different ways. These inclueléfliix representation” [1], reweight-
ing [2], stochastic quantization [3], and mean field methidds If we knew S corresponding to
Socp at realistic gauge couplings and light quark masses, arfeeibign problem remains mild,
then in principle we could determine the phase diagrafBiyeh by computing the phase diagram
of Sp. The first problem, however, is to firgh in the parameter range of interest. In this talk | will
discuss a novel approach to this problem; more details cdounel in ref. [5]1

2. Therelative weights approach

Consider QCD on ah? x N; lattice volume, withu = O for now. It is convenient to fix to
temporal gauge, with timelike links set to the unit matrixegmhere except on one timeslice, say
att = 0. Then, by definition

eXp[SD [UX]] = /DUO(X> O) DUDyDy { |_| 5[UX - UO(Xv O)]} e, (2.1)

X

Let us choose a set of “effective spin” configurations
{{ux<‘>,a||xev3}, i:1,2,...,|v|}. (2.2)

whereVs is a three-dimensional lattice of voluné, and imagine restricting the timelike link
variables at = 0 to this set. Define the partition function

7= / DUo(x, 0) DU DWD Y i { [781Us” —Uo(x.0)] } e, (2.3)

1For alternative approaches based on (i) strong-couplipgresions, cf. [2]; and on (ii) the inverse Monte Carlo
method, cf. [6] and [7].
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and consider the ratio

exp[SUW]|  [DUo(x,0)DUDTDY {1, 81U —Uo(x,0)] } e
exp[SUK]| | DUo(x.0)DUDTDY {1315 Uo<x 0)]  e%co
3/ DUs(x,0DUDDY {nx U+~ Uo(x, 0)] | e s
3 J DUo(x,0)DUDTDY {81 ~Uo(x,0)] peeco
Both the numerator and denominator have the interpretafianprobability, i.e.
Proqu ) / DUp(x, 0)DU DD Y {|‘| 5U Uo(x,O)]} gxco (2.5)

is the probability that timelike links dt= 0 are found to belong to theth member of the set (2.2).

Numerical simulation of the system described #Yyis carried out by updating all degrees of
freedom in the usual way, except for the timelike links at 0. These timelike links are updated
simultaneously, by choosing at random one of khenembers of the set (2.2), and accepting or
rejecting it via the Metropolis algorithm. We keep track b&tnumber of time§, that then-th
member of the set is accepted, out of the tbkgl = 3 ,Nn. Then ProfJ (”)] = Nn/Niot, in the limit
Niot — o0, and therefore

exp[sp[u(i)]} N
m = im, N_:( (2.6)

From this information we can either test any proposalSewor, possibly, determin& from the
data.

Let A parametrize a patbly(A) through the space of Polyakov line configurations. We can
use (2.6) to compute path derivativeS /dA atA = Ag. Let configuratiorU)SD correspond to the
point atAg + AA andU)Ek) to the point alg — AA. Then it follows, from (2.6), that

dso[uxmn) . 1{ N N_)
( O . log Neo log Neo (2.7)

Numerical accuracy can be improved by choosing a set of anmllii@ns{u,gn) = Uy (An)} along
the path with

An=A0+<n—MT+1>A/\ n=12..M |, 2.8)
Then for sufficiently smalbA we have
<w> ~ slope of log"™ vs. A, . 2.9)
d)\ A )\0 I\ItOt

Our long-term program is to first determife from Sycp at 4 = 0. Then we obtailgp at finite
u from the subsitutiotJ, — eMHU,, UJ — e*Nt“U,:r. From there, the idea is to solve the effective
spin theory by any of the means (flux representation, revii@ighstochastic quantization, mean
field) that have been suggested so far. The immediate goaé&va, is to see if the relative weights
method can extracd from the underlying lattice gauge theory, and this talk wdhcentrate on
the simplest example of pure SU(2) gauge theory.
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Figure 1. (a) The slope of the straight-line fit to the data shown givesesatimate for the derivative
L—3dS/da of S with respect to the amplitude of spatially constant effextpin configurations. (b) A
plot of the values fot. ~3dS»/davs. Py. Each data point is extracted from a plot similar to (a). Adsown
are the corresponding strong-coupling values, and a mestiffit to the data points.

3. Atest at strong coupling

The first question is whether the relative weights methodbeamsed to determir® in a case
where the answer is known. Let us tgke= 1.2, N; = 4 in lattice SU(2) pure gauge theoi can
then be readily computed by strong-coupling characterresipa methods:

v (i) | () Tamomwygene. e

wherePy = $TrUy and

S =

ot (15| (51) 62
The action can be divided into a potential and kinetic part
S =Kp+Wp
Ke = %BP Z ii(PXPx+f_ 2P + PP 7)
Ve = BBPZPXZ, (3.3)

First we determin&p by relative weights. We choose the set of spatially constanfigurations

Us” = (Po+an)T +iy/1— (Po+an)203

1
an — (n—E(MJrl))Aa n=12.M (3.4)

So in this casea is the A parameter, and it is easy to see tH& /da= dVp/dR). The data for
log(Nn/Neot) Vs L3(Py+ an) at Py = 0.5 is shown in Fig. 1(a), and the slope of this line gives us



Effective spin models

B=1.2, 12° X 4 lattice

. data —E—
[ & theory - |
0.04 o
0035 e
5 @
5 003 -
;r):. ]
o 0ot @
.}
0.02 | B
0.015 i

Figure 2: Derivative of the action w.r.t. path paramegrvs. squared lattice momentum. Data is taken at
strong gauge couplinf = 1.2 for plane-wave deformations. Squares indicate the velatieights values,
while green dots are the values obtained from the strongioauexpansion.

L—3dVk/dRy. All data shown in this article was obtainedlat 12. Repeating the calculation for
various values oP, (Fig. 1(b)) we find thatl\b/dR) is linear inP. Integrating, and dropping an
irrelevant constant of integration, the result is

0.1721(8) 3 3P? relative weights method
VP = ) (35)
0.1710y , %PXZ strong-coupling expansion

For the kinetic term, which by definition is zero for constanhfigurations, we choose a set
of small plane wave deformations of a constant background

U = A1 +iy/1— (R"Y)205
P = P+ ancogk - x) (3.6)

wherek; = 2rmm; /L are the components of the lattice wavevector, and it is coame to choose
An = &2 in this case. We compute—3dS>/d(a?) from the slope of logNn/Niot) vs L3a?, at fixedk
andPy, with the result, at fixed® = 0.5 but different choices df, shown in Fig. 2, Wherkf is the
usual (squared) lattice momentugh= 45, sir?(k /2). It follows thatL3dS/d(a?) = —AK +B,
and further simulations find that the constafstB are independent &. This information, together
with the knowledge of the potential, allows us to deduce ttt@a S (cf. [5] for details), and
compare with the strong-coupling result:

.02928) 3, 52 1 RP,.; (relative weights method)
S= (3.7)
02855, 52 1P, (strong-coupling expansion)
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Figure 3: Derivatives of the potential. Subfigure (a) shows the bestofithe data by a polynomial
aP+bP? +cP3, while subfigure (b) shows a best fit by polynomials with twaree, and four odd pow-
ers ofP, which are forms that might be expected from unbroken ceyt@metry.

4. The potential term at weaker couplings

Our convention is that the potential term is local, while kimgetic term vanishes for spatially
constant configuratiorid. In that case

Vp = ZV/(UX) and 7 (U) = éSa(U) (4.1)
andKp = S — Vp by definition. To compute the potential defined in this way, amdy need to
compute the variation di with respect to the amplitude of spatially constant configjons. As
at strong coupling, we choose the set (3.4) and computd S /da= L=3dVp /Py, but this time we
work at a weaker coupling = 2.2,N; = 4, which is still in the confined phase, and fit the result to
a polynomial inPy. The result is shown in Fig. 3(a), and the data is nicely fit lsylaic polynomial
1Py + C2P% + caPs.

At first sight this result would seem to violate center symmethich for SU(2) requires that
Vp(P) = Vp(—P), and therefore the derivative should be an odd functioR,ofhich would rule
out the quadratia:ng term. On the other hand, fits to the data using only odd powePRs are
not very good, as we see in Fig. 3(b). The fitimproves as momestare added; it is, however, a
little like fitting a step function with a truncated Fourierigs. But in fact the quadratic term does
not violate center symmetry, because simulatior®at 0 find that the quadratic term is actually
cng x sign(Py), and therefore, upon integration we find a center symmedtixeit non-analytic,
potential

1 1 1
Ve=5% (501Px2+ §Cz|Px|3 + chpf) (4.2)
X

5. Towardsthekinetic term

We consider two different sets of configurations. Type | Wil small plane wave deforma-
tions on a constant background (3.6), as in the last secflgpe Il will simply be plane wave
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configurations

U = AV +iy/1— (R"Y)205
R = A,cosk -x)

An = Ao+ (n—%(MJrl))AA n=12..M (5.1)

For Type | thea-dependence begins @a?) and we again computéSs/d(a?), but unlike the
strong-coupling case the result does depengyofror Type Il configurations, we computs/d A.

It turns out that an expression f& which seems to fit the data from Type | and Type I
configurations has the form

S = 20{%Px(\/_DE"i‘gPa%v‘f‘g/APz)xyPy— Z \/gP§v+g’AP2PX2}

1 -, 1 3 1 4
+Z(§Clpx +§c2|PX|+Zc3PX) (5.2)
where
1 > 1 2

The data (red) and best fits (green) to the data for Type | apé Tiyconfigurations are shown in
Figs. 4(a) and 4(b) respectively. The constamnts,,c3 match the constants already determined
for the potential. Although this action has been derivednfidata at very special (Type | and II)
configurations, it is natural to conjecture, based on theesgof this strategy at strong couplings,
that (5.2) holds throughout the field configuration space.

6. Conclusions

The relative weights method for deriving the Polyakov lireti@n has been tested at strong
lattice couplings, where the answer known, and the methattsmeell in that case. At a weaker
coupling8 = 2.2, N; = 4 for pure SU(2) lattice gauge theory, where the Polyakaw diction is not
really known, a conjecture for the full action has been prees

However, this conjecture comes with a strong caveat. Thdivelweights technique computes
path derivatives of the Polyakov line action at any poinhgla path in the field configuration space,
and the actiors has to be deduced from that information. In the present desetderivatives
have been computed only at very special points in configumagpace, and these points are quite
atypical, when compared to the thermalized Polyakov lingigarations that would be generated
in the course of a standard lattice Monte Carlo finite tentpeeasimulation. The approximate
form that the action takes at such special points cannot beagteed to hold in the more general
situation. Therefore it is crucial to test the proposedascin other, more typical, regions of field
configuration space. If the form (5.2) of the action survitlds test, then the next check would
be to compute an observable such as the Polyakov line clamela see if it agrees with the same
quantity computed in the underlying lattice gauge theoryope to report on the results of these
studies in the near future.
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Figure4: Derivatives ofS, for Type | and Type Il configurations. Red crosses are datatpcand the green
surface is a best fit to the data derived from the analytic f(&18). (a) Type | configurations:~3dS/d(a?)
vs. lattice momenturik. and Polyakov liné?. (b) Type Il configurations: Variation of the effective auti
with plane wave amplitude,~3dSp/dA evaluated af = Ay, for Polyakov line configurations proportional
to plane wave® = Acogk - x), as a function of\y and lattice momenturi_.
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