
P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
 
X
)
0
6
9

Temporal Wilson loop in the Hamiltonian approach
in Coulomb gauge

Markus Quandt∗
Universität Tübingen
E-mail: markus.quandt@uni-tuebingen.de

H. Reinhardt
Universität Tübingen
E-mail: hugo.reinhardt@uni-tuebingen.de

G. Burgio
Universität Tübingen
E-mail: giuseppe.burgio@uni-tuebingen.de

We investigate the temporal Wilson loop using the Hamiltonian approach to Yang-Mills theory.
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Temporal Wilson loop in the Hamiltonian approach in Coulomb gauge Markus Quandt

1. Introduction

Recent efforts to study Yang-Mills (YM) theory are largely based on Coulomb gauge, be-
cause the Gribov-Zwanziger picture of confinement [1, 2] becomes particularly transparent in this
framework: the only constraint on the physical states in a Hamiltonian approach based on Coulomb
gauge is Gauß’ law, which in turn can be resolved exactly so that any normalizable wave functional
can be used as a physical state.

Such a formulation naturally lends itself to variational methods, which are usually based on
(modified) Gaussian Ansätze for the vacuum wave functional, see e.g. [3, 4] and references therein.
The solutions agree with the Gribov-Zwanziger scenario and, when combined with the horizon
condition, lead to a coherent picture of strongly coupled YM theory, which is mainly dominated by
a diverging gluon energy in the infrared, a linearly rising Coulomb potential between static quarks,
and a strongly enhanced Faddeev-Popov ghost propagator in the infrared. The latter condition
implies that the YM vacuum behaves as a perfect colour dia-electric medium [5], i.e. a dual su-
perconductor. All these findings agree qualitatively with the results from recent lattice simulations
[6], although there are still some discrepancies in the quantitative details, in particular for the ghost
sector [7].

However, this simple picture is subject to the caveat that the Coulomb potential is only an
upper bound for the true potential between heavy quarks [8]. For a complete description, one
has to address the physical potential from large Wilson loops directly. In the continuum, this is
complicated by path ordering and large self-energy contributions which obscure the extraction of
the true potential from large Wilson loops [9].

In this talk, I report on a recent approach [10] to compute the Wilson potential in the Hamil-
tonian approach in Coulomb gauge. A careful analysis of Gauß’ law and the physical degrees
of freedom allows for an elegant way to isolate and remove the self-energy contributions to the
Wilson loop, while unitary transformations are applied to take care of time evolution. As specific
examples, we study quantum electrodynamics (or rather Maxwell’s theory) in D = (3+ 1) space-
time dimensions, and YM theory in both D = (1+1) and D = (3+1). In the latter case, only an
approximate solution can be found and I briefly discuss possible ways to improve our findings.

2. The Wilson loop in the Hamiltonian approach

We study SU(N) YM theory in euclidean space using the Hamiltonian approach in Weyl
gauge, A0 = 0. The physical energy states of this formulation are stationary wave functionals
Ψn[A(x)] · e−iEnt which obey the Schrödinger equation based on the Hamiltonian

H =
g2

2

∫
dxΠ

2(x)+
1

2g2

∫
dxB2 . (2.1)

Here, Aa(x) is the gauge connection, Π
a(x) =−iδ/δAa(x) its conjugate momentum, g the (bare)

coupling constant and Ba = ∇×Aa− 1
2 f abcAb×Ac the non-Abelian magnetic field.

To proceed, we must fix the residual time-independent gauge symmetry left after imposing
Weyl gauge, for which we choose the Coulomb condition, ∇ ·A = 0. This adds gauge-fixing terms
to the Hamiltonian (which we discuss below) and imposes Gauß’ law as a constraint on the physical
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states: In the sector with n static charges located at positions x1 . . . ,xn, we have n additional colour
indices on the wave functionals and Gauß’ law reads (with generators in the right representation)

Γ̂
a(z)Ψi1,...in(A ; x1, . . . ,xn) =−

{
n

∑
`=0

∑
{k`}

T a
i`k` δ (z−x`) ∏

m6=`

δimkm

}
· Ψk1,...,kn(A ; x1, . . .xn) . (2.2)

The complete physical Hilbert space thus decomposes into orthogonal charge sectors characterised
by the data from the external charges.

Next we consider a rectangular temporal Wilson loop of extension (T ×R). Since A0 = 0, we
have W = tr

{
U [A](R,0;T )† ·U [A](0,0;0)

}
, where U [A](y,x; t) is the parallel transporter x→ y at

fixed time t, in the background of the gauge potential A. Using euclidean time evolution and the
abbreviation U(x)≡U [A](x,0;0), we find

〈W 〉= tr〈0 |U(R)† e−(H−E0)T U(R) |0〉= tr〈R |e−T (H−E0) |R〉 . (2.3)

The salient point is now that the vacuum is gauge-invariant, while the Wilson state |R〉=U(R) |0〉
is in the qq̄-sector according to eq. (2.2). Inserting a complete set of energy eigenstates from all
sectors, only the qq̄-sector will thus contribute and we have

〈W 〉= tr ∑
n
〈0 |U†(R) |n〉qq̄ · e−(H−E0)T · qq̄〈n |U(R) |0〉= ∑

n
e−T (E(qq̄)

n −E0) ‖〈R |n〉qq̄‖2 , (2.4)

where ‖Ω‖2 ≡ tr(Ω†Ω). In the limit of large Euclidean time extensions, we project out the Wil-
son potential as the difference between the ground state energies with and without static quarks,
Eqq̄

0 (R)−E0 =− limT→∞ T−1 ln〈W 〉 .
The next step is to remove the Wilson line from the state |R〉 by means of a unitary transforma-

tion based on the parallel transporter U(R). Under such a transformation, the conjugate momentum
(and thus the Hamiltonian eq. (2.1)) acquires an additional term, Πa

i (x)→ Π̃a
i (x) = Πa

i (x)+εa
i (x),

where

ε
a(x)≡

∫ R

0
dyδ (x−y)U(y)†iT aU(y) . (2.5)

As a consequence, the Wilson loop is now computable as a zero-charge vacuum expectation value,

〈W 〉= tr〈0 |e−T (H̃−E0) |0〉 (2.6)

where H̃ differs from eq. (2.1) by the momentum shift1 ε(x).
To illustrate the problems in extracting the true potential, let us consider the contribution to

the Wilson loop eq. (2.6) which is quadratic in the induced electric field ε(x),

Vind(R) =
g2

2
tr
∫

dx [εa(x)]2 =
g2

2
C2 δ

(2)
⊥ (0) · |R| , (2.7)

where C2 is the quadratic Casimir operator for the colour group, and the (quadratically) divergent
prefactor δ⊥(0) is due to the infinitely thin Wilson lines. Although Vind is formally confining, it

1This shift complicates the treatment of H̃ considerably, since [Πa(x),εb(x)] 6= 0.
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must be spurious because it exists even for G = U(1). On the other hand, it is also not correct to
simply drop Vind, because the true potential is hidden underneath the divergence: For G =U(1),

Vind(R) =
g2

2
tr
∫

dx [ε⊥(x)]2 +
g2

2
tr
∫

dx
[
ε‖(x)

]2
, (2.8)

where the first factor renormalizes the Wilson loop, and the second factor gives the true (Coulomb)
potential, cf. section 3.1.

The unitary transformation leading to eq. (2.6) only assumes Weyl gauge and thus works with
or without Coulomb gauge fixing. In cases where the exact gauge-invariant ground state is known, it
is not necessary to fix the residual gauge freedom since the Wilson loop is gauge invariant. In more
realistic cases, however, the gauge invariant ground state will not be known and we have to resort
to approximations based on Coulomb gauge. The required gauge-fixing is virtually impossible to
effect directly in eq. (2.6), except for the Abelian model. A much better strategy is to go back
to eq. (2.3), perform the standard gauge fixing and resolve Gauß’ law exactly, which induces in
H→ Hfix the well-known Coulomb term,2

HC =
g2

2

∫
d3(x,y)J −1 [ρa(x)+ρ

a
dyn(x)]J Fab(x,y) [ρb(y)+ρ

b
dyn(y)] , (2.9)

where J is the Faddeev-Popov determinant and Fab the the so-called Coulomb kernel. The Wilson
loop now reads

〈W 〉= tr〈R⊥ |e−T (Hfix−E0) |R⊥ 〉 (2.10)

where the new Wilson-like state |R⊥〉=U [A⊥](R)|0〉 is no longer from the qq̄ sector, but rather has
overlap with the zero-charge vacuum. Any divergences associated with the point-like cross section
of of the Wilson lines in |R⊥〉 must therefore be unrelated to external charges: as we will see,
the extra divergences renormalize the composite operator W →WR ≡ ZW (Λ) ·W , but they do not
affect the physical potential. Whether or not the state |R⊥〉 in eq. (2.10) is subsequently removed
from the Wilson loop by a unitary transformation U⊥(R) as described earlier becomes a matter of
computational convenience.

3. Applications

3.1 Quantum Electrodynamics

In the Abelian case G = U(1), the exact ground state is known and we can first attempt a
gauge-invariant treatment based on eq. (2.6). The induced electric field

ε(x) =
R∫

0

dyδ
(3)(x−y) . (3.1)

is now field-independent, so that the induced potential (2.7) could be pulled out of the expectation
value 〈W 〉. In view of the discussion above, it is more convenient to first split ε = ε⊥+ε‖ and pull

2As a consequence of the parallel transport, the non-Abelian charges ρa(x) = δ (x−R) iT a−δ (x)U(R) iT a U(R)†

are field-dependent.
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out the longitudinal piece only, 〈W 〉= e−TV‖(R) · 〈0|e−T (H̃ ′QED−E0)|0〉 where

H̃ ′QED =
1
2

∫
d3x
{

g2 [
Π
⊥(x)+ ε

⊥(x)
]2
+

1
g2

[
∇×A⊥(x)

]2}
. (3.2)

It is now convenient to reverse the unitary transformation that led to eq. (2.7), but this time with the
transversal gauge connection A⊥ only. As a result, the shift in the electric field is removed from
the Hamiltonian (3.2) and reshuffled into the state |R⊥〉 = U [A⊥](R) |0〉 ≡U⊥(R) |0〉. Although
this new state resembles the initial Wilson state, it is gauge-invariant as it depends on A⊥ only.
Inserting a complete set of eigenstates of the standard QED Hamiltonian eq. (3.2) (without ε⊥)
yields

〈W 〉= e−TV‖(R) ·∑
n
|〈0 |U⊥(R) |n〉|2 e−T (En−E0) T→∞−→ |〈0|U⊥(R)|0〉|2 · e−TV‖(R) , (3.3)

provided that |R⊥〉 has non-vanishing overlap with the true vacuum. For Maxwell’s theory the
ground state is Gaussian and the relevant matrix element can be computed exactly. Using a O(3)-
invariant UV cutoff Λ for the momentum integration, we find that ZW formally vanishes in the limit
Λ→∞ because |R⊥〉 has poor overlap with the true ground state [9]. On the other hand, ZW is also
independent of the temporal extension T of the loop and hence cannot contribute to the physical
potential.

The correct interpretation is given by the operator product expansion (OPE): Since the loop
operator W contains products of field operators at arbitrarily close points, we expect short distance
(Λ→ ∞) divergences associated with W , on top of the counter terms necessary to render Green
functions finite. In fact, it has been known for a long time [11, 12] that one overall multiplication
W →WR ≡ Z−1

W ·W is sufficient to render 〈WR〉 = e−TV⊥ finite. From eq. (3.1), the true physical
potential becomes

V (R) =V‖(R) =
g2

2

∫
dx [ε‖(x)]2 =

g2

4πR
− g2

4π|0|
. (3.4)

This is just the usual Coulomb potential including the self-energy of the charges.
The entire derivation could also be repeated in a Coulomb gauge fixed formulation. If we start

from eq. (2.6), the gauge fixing gives H̃ → H̃fix = H ′QED +V‖, cf. eq. (3.2), and the computation
becomes identical to the gauge-invariant treatment above. Alternatively, we could also start from
eq. (2.3) and resolve Gauß’ law for the state |R〉 explicitly, which induces the Coulomb term H→
Hfix = HQED[A⊥]+HC in the Hamiltonian. This time, the Coulomb potential comes directly from
HC, while the first term in Hfix only renormalizes the Wilson loop.

3.2 Yang-Mills Theory in D = 1+1

This model is (almost) topological and requires a non-contractible spactime manifold to give
nontrivial results. Since time must be unrestricted in the Hamiltonian formalism, we compactify
space to an interval [0,L] with periodic boundary conditions and take spacetime to be the cylinder
M=R×S1. For this model, the induced potential eq. (2.7) gives the correct string tension

σ1+1 =
g2

2
C2

SU(2)
=

3
8

g2 . (3.5)

5



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
 
X
)
0
6
9

Temporal Wilson loop in the Hamiltonian approach in Coulomb gauge Markus Quandt

In view of the above discussion, it is, however, unclear why this should be the correct answer, in
particular since Vind = σ1+1 R is not periodic or invariant under R→ L−R as expected from the
compactification.

To address this issue, we go back to eq. (2.3) and fix the minimal Coulomb gauge ∂1Aa
1 = 0

and Aa
1 = diag. Taking the colour group G = SU(2) for simplicity, we are thus left with only one

scalar degree of freedom

ϑ ≡ 1
2

A3
1 L ∈ [0,π] . (3.6)

The restriction to the compact interval (the fundamental modular region in this case) eliminates
all residual gauge symmetries. In order to fix eq. (2.3), we have to determine the gauge fixed
Hamiltonian in the qq̄-sector to which the Wilson state |R〉 belongs. This has two pieces

Hfix = H0
fix +HC = Hfix +

g2

2

∫
d(x,y)ρ

a(x)Fab(x,y)ρ
b(y) , (3.7)

where the non-Abelian charge interaction comes from the resolution of Gauß’ law. The zero-charge
Hamiltonian H0

fix and its spectrum have been studied thoroughly in ref. [13]. As for the Coulomb
term, we have to take into account that the external charges ρa are field-dependent due to the
parallel transport. Expanding all colour vectors in a a polar basis (e0 = e3, e± = (e1±e2)/

√
2), we

find

HC =
g2

8

1

∑
σ=−1

τσ τ
†
σ

{
2Fσ (0;ϑ)−

[
e−2iσ (R/L)ϑ Fσ (R;ϑ)+ cc

]}
, (3.8)

where τσ are the polar Pauli matrices. The Coulomb kernel Fσ (R;ϑ) in the polar basis has also
been determined in ref. [13] by a Fourier expansion which is strictly periodic in R. In the first
period |R|< L, the series can actually be resummed to give the simple result

HC =
g2

8

[
3|R|− R2

L

]
1≡VC(R)1 ; (3.9)

for |R| > L it must be continued periodically. Quite surprisingly, this turns out to be independent
of the gauge field ϑ and can thus be pulled out of the gauge-fixed expectation value eq. (2.3).
Inserting again the complete set of eigenstates 〈ϑ |n〉= Ψn(ϑ) of H0

fix, we arrive at

〈W 〉= tr〈R|e−T (Hfix+HC−E0)|R〉 T→∞−→ tr |〈0|U(R)|0〉|2 · e−TVC(R) . (3.10)

The prefactor ZW = tr |〈0|U(R)|0〉|2 can be computed explicitly and turns out to T -independent
(and finite). Again, ZW is the OPE renormalization constant for the composite operator W and we
obtain the renormalized Wilson loop 〈WR〉 = e−TVC(R) . Since VC(R) is periodically continued for
|R|> L, we have to go to the limit L� R to avoid finite size effects, and the effective string tension
becomes

σ1+1 =
dVC(R)

dR

∣∣∣∣
R=0

=
3
8

g2 . (3.11)

This agrees with eq. (3.5) and is also the known expression from the literature. It remains to explain
why the physical potential VC(R) is periodic in R, but not invariant under R→ L−R as it should

6
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be on a compactified [0,L] ' S1. A careful analysis [10] along the lines in sec. 2 reveals that the
physical potential between static quarks is not given by any single Wilson loop once the space
direction is compactified. Instead, all the equivalent loops with R→ R+mL (m ∈ Z) compete and
the one giving the minimal potential dominates in the limit T → ∞. Taking this prescription into
account, the level crossing between |R〉 and |R−L〉 at R = L/2 yields a potential V (R) that is both
invariant and symmetric about R = L/2.

3.3 Yang-Mils Theory in D = 3+1

For the physically most intersting case of YM theory in D= 3+1, we start again from eq. (2.3)
and introduce the usual Coulomb gauge fixing in the Hamiltonian, combined with the resolution of
Gauß’ law in the qq̄ sector to which the Wilson state |R〉 belongs,

〈W 〉= tr〈R⊥|e−T (Hfix
YM+HC[ρdyn+ρ]−E0)|R⊥〉 (3.12)

In view of the approximations below, it is expedient to perform the unitary transformation from sec-
tion 2 and reshuffle the parallel transporter U [A⊥](R) from the Wilson state into the Hamiltonian.
As a result, we have

〈W 〉= tr〈0|e−T (Hfix
YM

∣∣
Π→Π+ε

+HC[ρdyn+ρind+ρ]−E0)|0〉 ≡ tr〈0 |e−T (H̃fix−E0) |0〉 , (3.13)

where the momentum Π in the gauge-fixed vacuum Hamiltonian is shifted by the induced elec-
tric field eq. (2.5), and the Coulomb term eq. (2.9) will now contain an induced charge ρind =

[−A⊥,ε⊥], in addition to the dynamic charge ρdyn = [−A⊥,Π⊥] of the gluon and the external
charge ρ of the static quarks. To proceed, we decompose the complete Hamiltonian H̃fix from
eq. (3.13) into three pieces, H̃fix = H0

fix+ṼC +∆H, where H0
fix is the usual Coulomb Hamiltonian in

the absence of external charges, ṼC is the non-Abelian Coulomb interaction between the external
charges, and ∆H containing the remaining (indirect) charge interactions.

In order to evaluate eq. (3.13) with this decomposition, we have resort to a sequence of ap-
proximations, which are not all under good control:

1. Jensen’s inequality: 〈W 〉 ≥ tr exp
[
−T 〈0|H̃fix−E0|0〉

]
= tr exp

[
−T 〈0|ṼC +∆H |0〉

]
2. Abelization: [U⊥(R) ,T a]≈ 0

3. Factorization: 〈0|Qa Fab Q′b|0〉 ≈ 〈0|Qa Q′b|0〉〈0|Fab|0〉 ≡ 〈0|Qa Q′a|0〉 F̄

Approximation (1.) allows to drop H0
fix, while (2.) removes terms involving the conjugate momen-

tum Π and ε⊥, and (3.) simplifies the remaining pieces in ∆H and, in particular, the Coulomb
interaction, ṼC. After a lengthy calculation [10], the Wilson loop is thus reduced to a form
which requires, as only input from the ground state, the gluon propagator 〈0|Aa

i (x)Ab
j(y)|0〉 =

δ ab ti j D(x−y) and the vev. of the Coulomb kernel, 〈0|Fab(x−y)|0〉= δ ab F̄(x−y):

〈W 〉 ≈exp

{
−T

g2

2
NC

∫
d3(x,y)ε

⊥
a (x)

[
N−1

C δ (x−y)+F(x−y)D(x−y)
]

ε
⊥
a (y)

}
×

× exp

{
−T C2 g2

[
F(R)−F(0)

]}
. (3.14)

7
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The first term in the exponent is again the self-energy of the Wilson lines which gives rise to
a renormalization ZW of the loop operator. The large distance behaviour of the second term
is dominated by the small momentum form of the correlators, for which we use the relations
D(k) ∼ [k2 +M4/k2]−

1
2 and F̄(k) ∼ k−4 suggested by both variational calculations [4] and recent

lattice simulations [7]. It can then be shown that the second piece in the exponent of eq. (3.14)
is subdominant (∼ R−1) at large distances. The dominant contribution to the Wilson potential is
given, in our approximation, by the explicit Coulomb interaction, and the Wilson string tension
equals the Coulomb string tension, σW ≈ σC.

4. Conclusions

In this talk, I have presented a recent calculation of the Wilson potential in the Hamiltonian
approach to Yang-Mills theory. A careful analysis of Gauß’ law and the physical degrees of free-
dom combined with unitary transformations to take care of time evolution reveal that the spurious
divergences in the Wilson potential can be absorbed in OPE renormalizations of the composite loop
operator. Using this formalism, the correct result could be derived in cases where the exact ground
state is known. For the physically most interesting case of Yang-Mills theory in D = (3+1), only
an approximate solution could be obtained in which the Wilson and Coulomb string tension equal
(while σW/σC ' 0.3 . . . 0.5 in lattice simulations). The main reason for this discrepancy is most
likely the approximate factorization used in the calculation, which neglects the screening of exter-
nal charges by gluons. One-loop calculations of this contribution indeed indicate a reduction of
σW , and further investigations of this issue are in preparation.
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