
P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
 
X
)
0
7
2

Lifting the Gribov ambiguity in Yang-Mills theories

Julien Serreau∗

APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu,
Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, 75205 Paris
Cedex 13, France
E-mail: serreau@apc.univ-paris7.fr

We report on the work presented in Ref. [1], where a new one-parameter family of Landau gauges

has been proposed for Yang-Mills theories, inspired by an analogy with disordered systems in

condensed matter physics. This is based on a particular average over Gribov copies which avoids

the Neuberger zero problem of the standard Fadeev-Popov construction. The proposed gauge

fixing can be formulated as a local renormalizable field theory in four dimensions and is well-

suited for analytical calculations. A remarkable feature is that, for what concerns the calculation

of ghost and gauge field correlators, the gauged-fixed actionis perturbatively equivalent to a

simple massive extension of the Faddeev-Popov action. The renormalization group flow of the

theory admits infrared safe trajectories, with no Landau pole. The one-loop calculations of Yang-

Mills two-point correlators show remarkable agreement with lattice simulations all the way to the

deep infrared.
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1. Introduction

A proper formulation of gauge fixing in non-abelian gauge theories is a longstanding issue.
The existence of Gribov copies for the most common choices ofgauges render the standard Fadeev-
Popov (FP) construction problematic at least away from the perturbative regime [2]. For instance,
in these gauges the FP construction for aSU(N) Yang-Mills (YM) theory discretized on a finite
lattice is plagued by the so-called Neuberger zero problem,inherent to any BRST invariant gauge
fixing [3]. In the following, we consider the Euclidean theory in the Landau gauge∂µAµ = 0, which
has been the most studied on the lattice. In that case, Gribovcopies corresponds to the extrema of
the functionalF [A] =

∫

x tr{A2} along the gauge orbitAU of a given field configurationA.

A way to cope with the Gribov issue is to pick up only one copy for each field configuration.
For instance, finding a minimum ofF [AU ] is a relatively easy task in lattice simulations [4]. How-
ever, it is not known how to implement this procedure for continuum approaches, which renders
comparisons somewhat tricky [5]. Gribov and Zwanziger (GZ)[2, 6] have proposed to restrict the
path integral over gauge fields to the first Gribov region, where the FP operator has only positive
eigenvalues. This can be approximately formulated in termsof a local, renormalizable field theory
[7] at the price of introducing a collection of auxiliary fields and a dimensionful parameter which
controls the (soft) breaking of BRST symmetry. However, thefirst Gribov region is not exempt
of Gribov copies:F [AU ] has in fact many minima. A refined version of this proposal, where one
introduces phenomenological vacuum condensates, agrees well with lattice data [8].

In [1], we have proposed a different approach to the Gribov problem based on averaging over
Gribov copies, instead of trying to single out a particular one, in a way that can be formulated
in terms of a local action. The averaging weight can be chosenso as to break the nilpotent BRST
symmetry soflty, leading to a perturbatively renormalizable gauged-fixed theory in four dimensions.
Furthermore, a non-flat weight lifts the degeneracy betweencopies and avoids the Neuberger zero
problem. The proposal of [1] is very much inspired from an analogy between the Gribov problem
and that of dealing with potentials presenting a landscape with (exponentially) large number of
nearly degenerate minima in the physics of disordered systems [9].

In practice, we use the functionalF [AU ] to weight the various copies. This particular choice
allows for an elegant and powerful formulation in terms of a collection of replicated supersym-
metric gauged non-linear sigma (NLσ ) models. A remarkable consequence of the symmetries of
the theory is that the NLσ model sector of the theory essentially decouples in perturbative calcula-
tions of YM ghost and gluon correlators. In that case, our gauge-fixing procedure is perturbatively
equivalent to a simple massive extension of the FP action in the Landau gauge, which is a par-
ticular limit of the Curci-Ferrari (CF) model [10]. This provides a fundamental link between this
phenomenological model and YM theories. Recent one-loop calculations of two-point correlators
in the CF model have been shown to agree remarkably well with lattice data all the way to the
deep infrared [11]. Moreover, the presence of a new running parameter (the gluon mass) opens the
possibility for infrared safe renormalization schemes, with no Landau pole, as discussed in [11]. In
this contribution, I briefly review the main aspects of the proposal of [1], recalling some one-loop
results of [11]. I discuss some open issues and mention ongoing research in this context.
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2. Weighting Gribov copies

We consider aSU(N) YM theory onR
d, with classical action

SYM [A] =
1
2

∫

x
tr

{

F2} , (2.1)

whereFµν = ∂µAν − ∂νAµ − ig0[Aµ ,Aν ] and
∫

x ≡
∫

ddx. For any operatorO[A], we define the
average over the Gribov copiesAU(i) of a given field configurationA as:

〈O[A]〉 =
∑i O[AU(i) ]s(i)e−SW [A

U(i) ]

∑i s(i)e−SW [A
U(i) ]

, (2.2)

wheres(i) is the sign of the functional determinant of the FP operator−∂µDµ evaluated atA= AU(i)

andSW[A] is a given positive definite weight functional. Here, the sumruns over all Gribov copies
of the Landau gauge, that is over all extremaU(i) of F [AU ] for a givenA. Eq. (2.2) defines a good
gauge fixing in the sense that it does not affect gauge-invariant operators:〈Oinv[A]〉 = Oinv[A] for
Oinv[AU ] = Oinv[A]. The denominator in (2.2) is crucial for this property to hold. In the case of
a flat weight,SW[AU(i) ] = const, all copies are degenerate –as in the case of the FP construction–
and this denominator –as well as the numerator in the case of gauge-invariant operators– vanishes:

∑i s(i) = 0. For a non-flat weight the degeneracy is lifted and there is no Neuberger zero problem.
In [1], we choose to weight copies with the functionalF [A] itself:

SW[A] = β0

∫

x
tr

{

A2} . (2.3)

with β0 > 0. This interpolates between the usual FP construction forβ0 → 0 (see below) and the
absolute Landau gauge [12], which corresponds to selectingthe absolute minimum ofF [AU ], in
the limit β0 → ∞. We also note that, assuming a gap between the minima ofF [AU ] and the first
saddles, the weight (2.3) suppresses copies outside the first Gribov region for not too smallβ0.

Once the average (2.2) over Gribov copies has been performedfor each individual field con-
figuration one performs the usual average over YM field configurations, hereafter denoted by an
overall bar. The average of a given operatorO[A] in our gauge-fixing procedure is thus obtained as
a two-step average1:

〈O[A]〉 =

∫

DA〈O[A]〉e−SYM [A]

∫

DAe−SYM [A]
. (2.4)

2.1 Field theoretical formulation

The discrete sums over Gribov copies in (2.2) can be written as constrained functional integrals
over local elementsU(x) of the gauge group. The constraint∂µAU

µ = 0 can be exponentiated by
means of a Nakanishi-Lautrup fieldh. Similarly, the corresponding Jacobian multiplied by the sign
s(i) in (2.2) is nothing but the determinant of the FP operator, which can be exponentiated by means
of standard FP ghost fieldsc, c̄. Denoting collectivelyV ≡ (U,c, c̄,h), we have:

〈O[A]〉 =

∫

DV O[AU ]e−SGF[A,V ]

∫

DV e−SGF[A,V ]
, (2.5)

1A somewhat similar gauge-fixing has been proposed in [13] where, however, the average was not restricted to
Gribov copies in the Landau gauge. This difference is essential, e.g., in making the present proposal renormalizable.
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with the gauge fixing action

SGF[A,V ] =

∫

x
tr
{

β0A2 +2∂µ c̄Dµc+2ih∂µAµ

}

A=AU
. (2.6)

The latter presents a number of linear and non linear symmetries, including a generalized non-
nilpotent BRST symmetry. These are most easily seen by introducing the matrix superfield

V (x,θ , θ̄ ) = eig0(θ̄c+c̄θ+θ̄θ h̃)U (2.7)

living on a superspace made of the original Euclidean spaceR
d supplemented by two Grass-

mann dimensions (θ , θ̄ ), which we collectively denote byθ . Here, h̃ = ih− i g0
2 {c̄,c} and the

x-dependence only appears through the fieldsU , c, c̄ andh. It is straightforward to show that

SGF[A,V ] =

∫

x,θ
tr

{

(

DµV
)†(

DµV
)

}

, (2.8)

where we introduced the covariant derivativeDµV ≡ ∂µV + ig0V Aµ and
∫

θ ≡
∫

dθdθ̄ g1/2(θ ),
with g1/2(θ ) =

(

β0θ̄θ −1
)

, can be seen as the invariant measure associated with curvedGrassman
dimensions [14]. Eq. (2.8) is the action of a supersymmetricgauged NLσ model on a curved super-
space. It is invariant under the isometries of the curved superspace, the super gauge transformation
Aµ → AU

µ = U AµU −1 + i
g0

U ∂µU −1 andV → V U −1, whereU ≡ U (x,θ ) is a local element
of SU(N) on the superspace, as well as under the rightSU(N) transformationV → URV , where
the matrixUR ≡ UR(θ ) can be local in Grassmann variables.

A non-trivial issue in Eq. (2.4) is the presence of the denominator of the average (2.5) over
Gribov copies, which is a highly non-linear, non-local functional of the gauge fieldA. Similar
two-step averagings are common in the theory of disordered system and are efficiently dealt with
by means of the replica trick [15]. In its simpler version, the latter amounts to writing, formally,

1
∫

DV e−SGF[A,V ]
= lim

n→0

∫ n−1

∏
k=1

(

DVk e−SGF[A,Vk]
)

. (2.9)

Introducing an-th replica from the numerator in (2.4), the final average over gauge fields then reads

〈O[A]〉 = lim
n→0

∫

DA(∏n
k=1DVk) O[AUn]e−S[A,{V }]

∫

DA(∏n
k=1DVk) e−S[A,{V }] , (2.10)

whereS[A,{V }] = SYM [A] + ∑n
k=1 SGF[A,Vk]. For perturbative calculations, one needs to factor

out the volume of the gauge group. This can be done by exploiting the gauge invariance of the
integration measureDA and of the YM action and using appropriate changes of variables to extract,
say, a factor

∫

DUn. Renaming(cn, c̄n,hn) → (c, c̄,h), one finally gets

〈O[A]〉 = lim
n→0

∫

D(A,c, c̄,h,{V })O[A]e−S[A,c,c̄,h,{V }]
∫

D(A,c, c̄,h,{V })e−S[A,c,c̄,h,{V }] , (2.11)

with D(A,c, c̄,h,{V }) ≡ D(A,c, c̄,h)
(

∏n−1
k=1 DVk

)

and

S[A,c, c̄,h,{V }] =
∫

x
tr

{

1
2

F2 + β0A2+2∂µ c̄Dµc+2ih∂µAµ

}

+
1

g2
0

n−1

∑
k=1

∫

x,θ
tr

{

(

DµVk
)†(

DµVk
)

}

.

(2.12)
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This describes a collection ofn−1 gauged supersymmetric NLσ models coupled to a gauge-fixed
YM field with gauge fixingSGF[A,1,c, c̄,h]. Notice that, as is clear from Eqs. (2.6) and (2.8),
each replica produces a termβ0A2, thus giving rise to a bare mass termnβ0A2. Thanks to its large
number of symmetries, the theory (2.12) has been shown to be perturbatively renrormalizable in
d = 4, with only two renormalization factors, in [1].

3. Perturbative equivalence with the Landau limit of the Curci-Ferrari model

Perturbation theory is most conveniently formulated in thesupersymmetric formalism, which
makes transparent the (dramatic) consequences of the supersymmetries for loop diagrams. Para-
metrizing the constrained superfieldsVk in terms of unconstrained ones, e.g.,Vk = exp{ig0Λk}, it
is straightforward to obtain the various propagators of thetheory (2.12), written below in Euclidean
momentum space. The gluon propagator reads:

[

Aa
µ(p)Ab

ν(−p)
]

=
δ ab

p2 +nβ0

(

δµν −
pµ pν

p2

)

, (3.1)

where the square brackets represent averaging with the action (2.12) withn 6= 0. It is transverse in
momentum, as a result of Landau gauge, and massive, with baresquare massnβ0, as a result of our
particular gauge fixing procedure. The ghost propagator assumes the usual form:

[

ca(p) c̄b(−p)
]

= δ ab/p2 . (3.2)

Finally, the superfield propagator is given by
[

Λa
k(p,θ )Λb

l (−p,θ ′)
]

= δ abδkl δ (θ ,θ ′)/p2 , (3.3)

whereδ (θ ,θ ′) = g−1/2(θ )(θ̄ − θ̄ ′
)(θ −θ ′) is the Dirac function on the curved Grassman space.

The vertices of the action (2.12) which do not involve the superfieldsΛk are the same as for
the usual FP Landau gauge. The NLσ model sector of the theory gives vertices with an arbitrary
number ofΛk legs and either zero or one gluon leg. Clearly, the latter arelocal in Grassmann
variables. Using (3.3), we conclude that any closed loop ofΛk superfields withp vertices insertions
involves the productδ (θ 1,θ 2) · · ·δ (θ p,θ 1) ∝ δ (θ 1,θ 1) = 0. Hence, the NLσ model sector of the
theory is tree-level exact. This is not surprising since, inthe above construction, the role of these
superfields is in fact to reconstruct the weighted sum (2.2) on Gribov copies, that is to project on
the extrema of the action (2.3).

This observation has two important consequences. First, the only perturbative source of de-
pendence in the numbern of replicas is the bare gluon mass in (3.1). Second, correlators or vertex
functions involving only the fieldsA, c andc̄ do not receive any loop contribution from superfields.
They are thus obtained from the very same diagrams as in the FPLandau gauge, with usual YM
vertices and with propagators given by (3.1) and (3.2), thatis from the effective action

S[A,c, c̄,h,{V }] → Seff[A,c, c̄,h] =
∫

x
tr

{

1
2

F2 +nβ0A2 +2∂µ c̄Dµc+2ih∂µAµ

}

. (3.4)

This simple massive extension of the FP action is a particular case of the CF model [10].

5
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A key point here concerns the issue of the limitn→ 0 versus renormalization. It is clear from
the above considerations that taking first the zero replica limit leads to the standard FP Landau
gauge. This, however, is not satisfactory since one expectsgauge-dependent quantities to depend
on the gauge-fixing parameterβ0. A similar situation arises if one introduces a renormalized gauge-
fixing parameter, e.g., asβ0 = Zβ β . An alternative renormalization scheme is to redefine the square
mass asnβ0 = Zm2m2. This absorbs the remainingn-dependence and gives a non-trivialn→ 0 limit.

4. One-loop results

The ghost and gluon propagators have been computed at one-loop in the theory (3.4) in [11].
The results are in remarkably good quantitative agreement with lattice data forSU(2) andSU(3) in
d = 4 and give a fairly good qualitative description ind = 3. Fig. 1 reproduces the gluon and ghost
propagatorsGab

µν(p) = δ ab(δµν − pµ pν/p2)G(p), andDab(p) = δ abD(p) computed in [11].

p 
G
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)

2
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 0

 0.5
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 0  1  2  3  4  5  6  7  8
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F
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)

 0

 2

 4

 6

 8

 10

 12

 14

 0  1  2  3  4  5  6  7  8

Figure 1: The gluon and ghost dressing functions,p2G(p) andF(p) = p2D(p), for the SU(3) theory in
d = 4, obtained in [11]. Lattice results are shown as blue dots. The lines show the one-loop results obtained
from the action (3.4), without (red) and with (black dashes)renormalization group improvement in the
UV. The employed renormalization conditions areG−1(0) = m2, G−1(µ) = m2 + µ2, D−1(µ) = µ2 and a
standard Taylor scheme for the coupling. The parameters arem= 0.54 GeV andg = 4.9 atµ = 1 GeV.

Another interesting observation is that the theory (3.4) admits infrared safe renormalization
schemes, with no Landau pole, as discussed in [11, 1].2 Defining the renormalized fields and
constantsA =

√
ZAAr , c =

√
Zccr , c̄ =

√
Zcc̄r , g0 = Zgg andnβ0 = Zm2m2, the following renormal-

ization conditions

G−1(µ) = m2+ µ2, D−1(µ) = µ2, ZAZcZm2 = 1, (4.1)

together with the Taylor condition for the coupling,ZgZc
√

ZA = 1, lead to the renormalization
group (RG) flow depicted in Fig. 2. There is an ultraviolet (UV) attractive fixed point atm= 0
andg = 0: both the bare couplingg0 and the bare massnβ0 vanish in the process of removing
the UV regulator. We note that this is compatible with takingthe limit n→ 0 at fixed gauge-fixing
parameterβ0. Most remarkably, RG trajectories fall in two distinct classes, depending on the initial
conditions in the UV: those with or without a Landau pole in the IR. It is worth mentioning that the
best values ofmandg for describing lattice data in the scheme (4.1) belong to thesecond class [11].

2The IR flow of this theory has also been studied in [16].

6



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
 
X
)
0
7
2

Lifting the Gribov ambiguity Julien Serreau

Landau
pole

No Landau pole
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g

m̃

Figure 2: One-loop RG flow in the plane ( ˜m= m/µ ,g). The arrows indicate the flow towards the infrared.

5. Issues and perspectives

The gauge-fixing proposed in [1] provides what appears to be an essential feature of the gluon
propagator, an effective mass term, already at tree level. This raises the following issues. In prin-
ciple, different values of the gauge-fixing parameterβ0, corresponding to different RG trajectories
in Fig. 2, could give (vastly) different results for the YM correlators. Instead, lattice results in the
minimal Landau gauge show at best a mild sensitivity with theselected Gribov copy [17]. However,
it is conceivable, as mentioned previously, that the minimaof F [AU ] be nearly degenerate and well
separated from the first saddles. This is supported by numerical investigations on small lattices,
where all copies can actually be found [18]. If so, there exists some range of values ofβ0 which
corresponds to giving essentially an equal weight to copiesin the first Gribov region –probed by
lattice simulations– and to suppressing those outside the first region. It is presently not known how
lattice results are affected if one selects a copy outside the first Gribov region. This issue requires
detailed studies of Gribov copies, including sadles, in thespirit of [18].

Another important question concerns the limitn→ 0 versus renormalization which, as already
mentioned, do not commute. A similar issue arises in the theory of disordered systems, where
one is concerned with the thermodynamic limit instead of renormalization. In this context, it is
understood that the limitn→ 0 should always be taken last [15]. In fact, replicas can be viewed as
non-trivial external fields which allow one to probe the complicated landscape of the potential and
which should be removed only at the end of the calculations inorder to probe non trivial physics,
such as spontaneous symmetry breaking. We believe this picture can be fruitful in the YM context
too. Sendingn→ 0 naively leads to the standard FP Landau gauge with nilpotent BRST symmetry.
Taking, instead, the limitn→ 0 after having properly removed the UV regulator, one captures non-
trivial IR physics where, however, the nilpotent BRST symmetry is broken. This is very transparent
after the superfields have been integrated out in (3.4). The mass termnβ0 can be seen as an external
source which explicitly breaks the BRST symmetry. The fact that the symmetry is not recovered
after this source is eventually removed signals that it is spontaneously broken by IR fluctuations.3

To conclude, we believe the proposal of [1] opens a possibility to access non-trivial IR physics
by perturbative methods. Ongoing research in this context includes the calculation of higher-order
corrections and higher-order vertices in the theory (3.4) and the inclusion of quarks [19], or the
calculation of YM correlators and thermodynamics at finite temperature [20]. It may be of interest

3We mention that a similar construction can be made for QED. Inthis case, however, the mass term does receive
nontrivial renormalization and thus vanishes in the limitn→ 0.
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to investigate the non-perturbative aspects of the theory (2.12) either with continuum methods or
with lattice simulations, in the spirit of [21], see also [5]. Other interesting questions concern the
the generalization of the approach of [1] to other gauges [22], or the relation with other proposals
such as, e.g., [23]. Finally, a major open question is that ofunitarity [24].
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