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1. Introduction

QCD in Coulomb gauge, being best suited to examine the Gribov-Zwanziger (GZ) confine-
ment ideas [1, 2], has been the subject of intense research in the last few years. In a series of papers
[3, 4, 5, 6, 7, 8], which we will briefly summarize here, we have analyzed the behaviour of all
relevant two-point functions on the lattice and compared them with the corresponding predictions
of Hamiltonian variational calculations [9, 10, 11], concentrating on the features relevant for the
GZ scenario.

As Gribov in his seminal paper noticed, for non-Abelian theories most gauge conditions admit
several solutions and the corresponding Faddeev-Popov (FP) mechanism is not sufficient to define
the functional integral beyond perturbation theory. The field-configuration space must therefore be
restricted to a domain, continuously connected to the origin, where the gauge condition at hand
always possesses unique solutions. He then argued how, as soon as the fields cross the boundary
of such region, the ghost dressing function acquires a singularity; the “no-pole” condition for the
FP-ghost is then necessary to implement the restriction. In particular, in Coulomb gauge, he argued
how such restriction can imply a diverging gluon self-energy, motivating its disappearance from the
physical spectrum.

Many issues remain of course in the above description open. Gribov based his conjectures
on more or less heuristic arguments. Zwanziger later tried to put the whole set-up on a more
solid basis, while variational calculations, which are viable in Coulomb gauge since they by-pass
the explicit construction of the gauge invariant Hilbert space [12], did provide some insight on
the relation of the GZ-mechanism to the Hamiltonian formulation. In both cases, however, ap-
proximations need to be made; although many authors tackled the problems during the years
[13, 14, 15, 16, 17, 18], a satisfactory non-perturbative cross-check from lattice calculation was
hindered for a long time by the presence of strong discretization effects. In our papers we have
shown [3, 7, 8] how for each propagator improvement techniques can quite effectively take care of
such problems and make an explicit check of the GZ-scenario possible.

As first suggested in [3], the size of discretization effects can be investigated on anisotropic
lattices, where the time and space like cut-off at , as are kept different. In Fig. 1 we show the effect
of taking the limit at → 0, which controls the lattice Hamiltonian limit, on the SU(2) Coulomb
gauge functional calculated at fixed space-like cut-off, i.e. RG-point. Perturbative determinations
of the latter [19, 20] are not precise enough and we have re-checked the only non-perturbative
calculation found in the literature [21]; details can be found in [8], as well as the details of the
gauge fixing algorithm, which adapts those introduced in [22, 23]. Following the ideas in [3], a
first anisotropic analysis in SU(3) had been attempted in [24].

From the continuum analysis and from our results in [3, 4] we know that in the pure gauge
sector the static gluon propagator, the static Coulomb potential and the ghost form factor should
obey:

D(~p) =
|~p|√
|~p|4 +M4

VC(~p) =
8πσC
|~p|4

+
η

|~p|2
+O(1)

d(~p)'


1
|~p|κgh |~p| � Λ

1

logγgh
|~p|
m

|~p| � Λ

(1.1)

2



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
 
X
)
0
7
5

Lattice Coulomb propagators, effective energy and confinement Giuseppe Burgio

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

ξ

F
ξ
(a

s
)

 

 

a
s
 = 1.060(6) GeV

−1

a
s
 = 0.556(5) GeV

−1

a
s
 = 0350(5) GeV−1

(a)

10
−1

10
0

10
−3

10
−2

a
t

F
ξ
(a

s
) 

−
 F

∞
(a

s
)

 

 

a
s
 = 1.060(6) GeV

−1

a
s
 = 0.556(5) GeV

−1

a
s
 = 0.350(5) GeV

−1

(b)

Figure 1: (a): dependence of the gauge fixing functional Fξ (as) on the anisotropy ξ = as/at at fixed spatial
cut-off as. (b): Deviation of the gauge fixing functional from the Hamiltonian limit, Fξ (as)−F∞(as), as a
function of the temporal lattice spacing at , together with its leading power corrections.

where M ' 1 GeV and for the gluon self-energy ωA = D−1(~p). The quark propagator, the fermion
self energy and the running mass M(|~p|) take the form [7]:

S(~p, p4) =
Z(~p)

i~p/+ ip/4α(~p)+M(~p) ωF(|~p|) =
α(|~p|)
Z2(|~p|)

√
~p2 +M2(|~p|)

M(|~p|) = mχ(mb)

1+b
|~p|2

Λ2 log
(

e+
|~p|2

Λ2

)−γ +
mr(mb)

log
(

e+
|~p|2

Λ2

)γ ,
(1.2)

where Z is the field renormalization function, α the energy renormalization function, mb the bare
quark mass, mχ(mb) the chiral mass and mr(mb) the renormalized running mass [7]. In the follow-
ing we shall verify such behaviour and determine the relevant parameters.

2. Results

2.1 Ghost form factor

A careful analysis of the ghost form factor in the Hamiltonian limit at → 0 shows that its
UV behaviour agrees with Eq. (1.1), with γgh = 1/2, confirming continuum predictions, and m =

0.21(1) GeV, see Fig. 1 (a). In the IR going to higher anisotropies increases the exponent κgh, as
shown in Fig. 1 (b), where we plot |~p|κm d(~p), with κm the IR exponent for ξ = 1, as a function
of the anisotropy. The limit ξ → ∞ gives κgh & 0.5, confirming the GZ-scenario. This however
disagrees with some continuum predictions κgh = 1, deriving from the assumption of the finiteness
of the static ghost-gluon vertex. Whether this is indeed correct and algorithmic improvements
could change the lattice result is still a matter of investigation.
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Figure 2: (a): UV behavior of d(~p) compared with Eq. (1.1). (b): IR behavior of |~p|κm d(~p), both for
different anisotropies ξ .

2.2 Coulomb potential

In Fig. 3 (a) we show |~p|4VC(|~p|) as obtained from different anisotropies. Fitting the results
to Eq. (1.1) we get, in the Hamiltonian limit ξ → ∞ σC = 2.2(2)σ , as expected from Zwanziger’s
predictions [25].
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Figure 3: (a): Infrared behavior of |~p|4 VC(~p)/(8πσ) for different anisotropies ξ . (b): Quark field renor-
malization function Z(|~p|).

2.3 Quark propagator

Our calculations were all made on a set of configurations generated by the MILC collaboration
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[26], see [7] for details. The use of improved actions is crucial to establish the scaling properties
of the Coulomb gauge quark propagators. This is very similar to the situation in Landau gauge, see
e.g. [27, 28, 29], whose techniques we have adapted to our case.

Fig. 3 (b) shows the scaling of the renormalization function Z(|~p|) for configurations calculated
at similar bare quark mass, while the RG-invariant functions α(|~p|) and M(|~p|) are given in Fig. 4.
Their behaviour agrees with theoretical expectations, see Eq. (1.2).
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Figure 4: (a): Energy renormalization function α(|~p|). (b): Running mass M(|~p|).

Our most interesting results are given in Fig. 5. Analogously to the gluon self-energy ωA(|~p|),
the quark self energy ωF(|~p|) has a turn-over at |~p| ∼ 1 GeV, clearly departing from the behaviour
of a free particle, and diverging in the IR, see Fig. 5 (a); although awaiting confirmation on larger
lattices, this would in principle extend the Gribov argument for its disappearance from the phys-
ical spectrum to full QCD. Moreover, as Fig. 5 (b) shows, the running mass M(|~p|) we obtain is
quantitatively compatible with our phenomenological expectations from chiral symmetry breaking.
Fitting it to Eq. (1.2) we obtain b = 2.9(1), γ = 0.84(2), Λ = 1.22(6) GeV, mχ(0) = 0.31(1) GeV,
with χ2/d.o.f.= 1.06.

3. Conclusions

We have shown that the GZ confinement scenario is realized in Coulomb gauge. The ghost
form factor d(|~p|) is IR divergent with an exponent κgh & 0.5, which implies Gribov’s no-pole con-
dition and a dual-superconducting scenario [30]; the gluon propagator satisfies the Gribov formula,
implying an IR diverging self-energy, and the Coulomb string tension is roughly twice the physical
string tension. Moreover from the quark propagator we can easily extract the quark self energy
ωF(|~p|), which is also compatible with an IR divergent behaviour, and the running mass M(|~p|),
which gives a constituent quark mass of mχ(0) = 0.31(1) GeV.

This is in contrast to Landau gauge, where BRST symmetry seems to be non-perturbatively
broken, violating the Kugo-Ojima confinement scenario [31], while the GZ confinement scenario
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Figure 5: (a): Quark self energy ωF(|~p|). (b): Running mass M(|~p|) in the chiral limit mb→ 0; see Eq. (1.2).

cannot be realized without the explicit introduction of an horizon function, see e.g. [32] for a recent
review; its physical implications and how these can be related to the presence of dim-2 condensates
[33, 34, 35] are an interesting issue still debated in the literature [36].
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