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1. Introduction

The low-energy behavior of QCD, the spontaneous breaking of céyrametry, including
the explicit breaking by the quark masses, is described by chiral patiomiztheory X PT). In the
lattice regularization of QCD lattice artifacts can contribute to the breaking icdlclymmetry,
for Wilson fermions, or its partial breaking, in the case of staggered feisnidhese effects can
be included in th&PT approach, leading to new, lattice discretization dependent low-energy
stants. We consider Wilson fermions in this contribution, for which the effedtieory, Wilson
XPT (WXPT) was introduced and worked out [h [1]. The new terms in the chiraldregian affect
the low-lying spectrum of the (Hermitian) Wilson-Dirac operatfdr [2]. Foeeent review with
additional references, see Rdl. [3]. Here, we test and verify thaigiions for the distribution of
the low-lying eigenvalues with lattice QCD simulatiofis[[#, 5] and sHdw [6] that thae be used to
obtain the new low-energy constants introduced iXRV. We also demonstrate the effect of clover
improving the Wilson-Dirac operator.

2. The WXPT and Wilson RMT framewor k

We will be concerned with the-regime of WXPT where the zero momentum modes dominate
— the system size is such thagL < 1. In addition we adopt the power counting with~ a2.
Hence, dropping the kinetic part of the chiral Lagrangian, we consider

1 1
L= —5mETr (U +UT) - 22T (U -U") +a? . (2.1)
The second term, representingygsy term, is introduced for later conveniencg. describes the
lattice artifacts([L]

¥ =WeTr (UZ+U2) W [Tr (U +UT)] %+ Wy [Tr(U —u™)]? . (2.2)

At large N, the two-trace terms are suppressed.
The finite size scaling considered is such that

m=mzVv, 2=2V and & =aWV for j=6,7,8

are held fixed. Her& is the condensate aMithe volume.

This leading order in WWPT can equivalently be described by a chiral random matrix theory
(RMT). For Wilson fermions, including the one-trace term with low-enemystani\g, the Dirac
operator is represented in Wilson RMT (WRMT) §k [2]

aA W
P = (in as) ’ 23

with W a random(n+ v) x n complex matrix, ancA and B random Hermitian matrices of size
(n+v) x (h4v) andn x n, respectively. As usual in the RMT context, we consider a fixed index
v. We use a chiral basis witg = diag(1,...,1,—1,...,—1). AandBrepresent the chiral symmetry
breaking term corresponding to the Wilson term in the Wilson-Dirac operator
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Ens| Bw | ro/a| alfm] | size| L[fm] | |Q| =0, 1, 2 cfgs
2.635| 5.37 | 0.093 | 16 15 1279, 2257, 153(
2.635| 5.37 | 0.093 | 20* 1.9 401, 682, 644
2.79 | 6.70| 0.075 | 20* 1.5 1207, 2130, 1448

O W >

Table 1. The ensembles used. The scale is setdoy 0.5 fm. Therg/a values come from interpolation
formulae in [1P].Q is the topological charge (see text).

The two-trace terms can be incorporated in WRMT via two Gaussian integsation

0 Y|

_Ye YT
16% 16"a§ Vidy 5 . A
1678ca _mdyedwe Z¥(M—Ye,2—Yy7,0,0,3) . (2.4)

Z%(M,2,86,87,85) =

Here,
7% (1, 2,0,0,4g) — / dU det’UeV# (We=W7=0) (2.5)

is the fixed-index partition function with the one-trag¢a?) term included.

3. Index of the Wilson-Dirac operator

As indicated above, RMT predictions apply to gauge field sectors with aifickk, or, in the
continuum, fixed topological charge. For the Wilson-Dirac operator, tthexican be defined by

v = Zsigwkwm (3.1)

with |k) thek'th eigenstate of the Wilson-Dirac operatbxy. Only eigenvectors with real eigenval-
ues contribute, and theéndicates that only the real eigenvalues in the branch near zero, with eigen
values< rey, are kept. Introducing the Hermitian Wilson-Dirac operddgfmg) = y5(Dw + mp)

and using

Ds(mo)[¢) =0 = Dwl|y) =—mo|y) (3.2)

the index can equivalently be obtained from the zero crossings of tiograptow of Ds(mg) up

t0 Moyt = —reut [l It corresponds to the index of an overlap operafpr [8] with kB me).
Because of the dependence on the choice.@f the index of the Wilson-Dirac operator is not
unique.

4. Thenumerical smulations

For our numerical tests, in the quenched case, we generated thregésasing the Iwasaki
gauge action[]9], which suppresses dislocations and gives a fairlypemiglexv or topological
chargeQ. The ensembles are characterized in Tgple 1.

The topological charge listed in Taljle 1 was obtained after six steps of FhéRring [1]L] with
an improved latticéF operator [ZR]. On the configurations witQ| < 1, as well as théQ| = 2
configurations of ensemble A, we also did the much more expensive computdtibe index
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Figure 1. Distribution of the real eigenvalues of the Wilson-Diraeogtor for thev = 1 configurations of
the twoL = 1.5 fm ensembles A and C (left) and comparison of the distrutvith and without clover
improvement ai = 0.093 fm (ensemble A, right).

from the spectral flow. We first applied one HYP smearing before aactstg the Wilson-Dirac
operator. The topological charge and the index agreed on most catitgs, with the agreement
improving at smaller lattice spacing and becoming worse for the larger voluswrdate C, for
which it was about 97%.

The crossing points in the spectral flow are the real eigenvalues, wiigisbution is shown
in Fig. 1 (left). The dashed vertical lines are estimates of (minus) the critice$.m&ome real
eigenvalues are smaller, on so-called “exceptional” configurations.

For ensemble A, we also computed the spectral flow with clover improving the@kvidrac
operator, again after one HYP smearing. The clover coefficient vids 4ewhich is expected to
be close to the nonperturbative value after the HYP smedrihg [13]. Fhéirg distribution of the
real eigenvalues is compared to the unimproved case ifJFig. 1 (right). Thievempent is quite
dramatic, besides the expected reduced shift away from zero, the wistilis much narrower
and more symmetric. The width is determined by thg?) terms in Eq. [2]2), so with clover
improvement the coefficients are much smaller.

5. Wilson eigenvalue distributionsand WRMT

We next computed the lowest 20, in magnitude, eigenvalues of the Hermitiannv/Disac
operatorDs(mg) with bare massuimy, = —0.216 for ensembles A and B to compare to eigenvalues
distributions obtained from WRMT][2].

Without clover improvement, we considered only contributions from the tawetiterm in
Eq. (2:2) [3]. We used the = 0 histogrammed eigenvalue distributions of ensemble A to determine
the WRMT parametersn and & = dg and the eigenvalue rescaling factv. Using the same
parameters we then get a prediction for the 1 distribution that can be compared to the numerical
data (see Fid] 2 top).

Ensemble B differs from ensemble A only in the volume. Using volume scalipg="
Ma(Ve/Va) andds = éa+/Vs/Va, we obtain predictions for the distributions for ensemble B (see
Fig.[2 bottom). As can be seen, the WRMT predictions work well.
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Figure 2: Comparison of the histogrammed eigenvalue distributioits WRMT. The v = 0 distribution
of ensemble A (top left) was used to obtain the parameters.pfédictions for ensemble B (bottom) used
volume scaling of the parameters.

For ensemble C, at the smaller lattice spacing, we computed the eigenvaluesandiffénent
bare masseany = —0.178 and—0.184. We used the histogrammed= 0 distribution with bare
massamy = —0.184 to the determine the WRMT parameters, and used “mass scalirig
Amy2V for predictions for the distributions with the other bare masg = —0.178, as shown in
Fig.[3. Again, the WRMT predictions work well.

6. Clover improved eigenvalue distributionsand WRMT

We have already seen from the distribution of the real eigenvalues ifi Fight) that clover
improvement not only, as expected, decreases the additive mass répatiora (the real eigen-
value peak is much closer to zero) but also the size oftfe#) low-energy constants considerably
(the distribution becomes much narrower). Here we consider the effie¢teedistribution of the
20 lowest, in magnitude, eigenvalues of the Hermitian Wilson-Dirac opebafony) with clover
improvement for ensemble A using a bare masg = —0.03. The comparison with WRMT is
shown in the first three panels of F[g. 4.

For|§;| < 1 the lattice effects affect, to leading order, only the index peak of the tgjwalo
modes. These are the lowest eigenvalues with almost chiral eigenvetticis aorrespond to the
real eigenvalues shifted by the bare mass. As can be seen {j Fig. 4 (bigttnthe distributions
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Figure 3: Comparison of the histogrammed eigenvalue distributiatts WRMT for ensemble C. The =0
distribution with bare masany = —0.184 (top left) was used to obtain the parameters. The predgfor
bare massimy = —0.178 (bottom) used “mass scalingtth = AmpZV.

match almost perfectly. The eigenvalue density, ¥dr> 0, on the opposite side of the index peak
is almost continuum like and allows determinationnofidXV. We use thev| = 1 eigenvalue
distribution for this. Theaj are then obtained from their effect on the index peak. We use the fact
that the low-energy constant have fixed sigvs< 0, W, < 0 andWs > 0 [, [[4,[1F] and that the
distribution depends only on the combinatii| + [W;| [B] allowing to takeW, = 0. We find that
with eitherdg # 0 or & # 0 we can reproduce the histogrammeg= 0 and|v| = 1 distributions
in Fig.[4 (top) equally well. But only witkag # 0 can we reproduce tHe| = 2 distribution, too, as
shown in Fig[# (bottom left).

We can explain the drastically different effect\&f andWs on the analytic prediction for
|v| = 2 by noting that thé\s-term, in WRMT, corresponds to a Gaussian fluctuating mass, see
Eqg. (2.3). Thed-function index peak of the continuum theory is therefore smeared intaiasie
peak with an amplitude that increases wijth. W, therefore, does not introduce a repulsion
between eigenvalues. On the contrary, Weterm of WXPT is included in the representation of
the Dirac operator, Eq[ (3.3), of WRMT, and hence induces an eigentepulsion, as can be seen
from the red curve in Fig]4 (bottom left). This repulsion is seen for all@savith |[v| > 1 [F].
It is thus useful to include eigenvalues from configurations \with> 1 for a determination of the
low-energy constants from fits to eigenvalue distributions.

We finally note that, with clover improvement the nonvanishjég is about a factor 3-4
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Figure 4: Comparison of the histogrammed clover-improved eigemrvdistributions with WRMT for en-
semble A (top and bottom left). The= 1 distribution (top right) was used to obtain the WRMT paramet
The red curves are the WRMT predictions wéh=~ 0, the blue curves those witly 7 0. The bottom right
plot shows a comparison of the distribution of the real eighres with the first two positive eigenvalues of
Ds(mp) shifted by the bare mass for thve= 2 configurations.

smaller than the nonvanishings| without the improvement, both after one HYP smearing, illus-
trating again the quite dramatic effect of clover improvement orctt@?) low-energy constants.

7. Conclusion

We have presented numerical simulations, in the quenched case, of thgrigweigenvalues
of the Hermitian Wilson-Dirac operator, both with and without clover improvert@onompare to
predictions frome-regime WilsonXPT or, equivalently, Wilson RMT. We used the Iwasaki gauge
action which suppresses dislocations and leads to a fairly unique indepadogical charge. This
is helpful, since the analytical predictions are made for sectors of fixezkind/e found that our
eigenvalue distributions agree well with the analytical predictions, andegstialing with volume
and (bare) mass.

We have also looked at the distribution of the real eigenvalues of the Wiémait-operator,
obtained from the spectral flow. We found a dramatic decrease of bo#ulthigve mass renormal-
ization (the real eigenvalue peak is closer to zero) anditfe) low-energy constants (the width
of the distribution becomes narrower and more symmetric) with the clover immeve
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Fits to the distribution of the low-lying eigenvalues of the Hermitian Wilson-Diraerafor al-
low determination of the low-energy constants of QCD including those thahpeterize ther (a?)
lattice effects. However, distributions on configurations With> 1 are needed to disentangle the
effects ofWg from those o\ andW; when all|4;| are small.
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