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1. Introduction

The aim of this work is to gain insight into the phenomenon of spontaneows sfimmetry
breaking in QCDZ! Despite being one of the cornerstones in hadronic physics, standingllyirtu
uncontested, SChSB remains shrouded in clouds with regard to its dynamaioad¢. The quark
dynamics of QCD is represented by Dirac eigenmodes and at least thenlengygoart of this
spectrum is accessible via numerical lattice QCD. It is thus both interestingraatical to study
the features of low—lying Dirac eigensystem in some detail. For example,li poave fruitful to
inquire what distinguishes low-lying eigenmodes in broken theory fronethlosymmetric one.

A well-known spectral distinction is that the eigenmodes of a broken themrglense, while
those of a symmetric theory do not. Indeed, invoking its spectral rededs®m scalar fermionic
density in the massless limit (“chiral condensate”) is proportional to thetspelensity of near—
zeromodes (“mode condensate”), the fact known as the Banks—Gekt®n [2]. However, being
an implicit definition of SChSB, mode condensation feature is more of a kinematical constraint
than a window into the dynamical specifics of the breaking mechanism.

In going beyond the Banks—Casher relation, it is natural to examine thergpistructure
of the eigenmodes and, in particular, to look for the imprints of broken chyrametry in their
chiral properties The roots of our present approach go back to Hgf. [3] in that thetioters
to characterize the behavior of the eigenvectocally. Indeed, global chiral properties of Dirac
modes are fixed and with acceptable lattice discretization, such as overt@prie [4] used here,
this is faithfully reproduced at the regularized level. The local behawiothe other hand, reflects
details of dynamics induced by interacting quarks and gluons.

Nevertheless, a significant conceptual change had to take place [&¢ébchirality to become
a useful tool inbottom—upapproach to QCD vacuum structufg [6], i.e. in meaningful characteriza-
tion of QCD vacuum properties without reference to models. This chaagéohdo with viewing
chirality as a dynamical concept, quantified relative to the situation whenndftright compo-
nents are independent degrees of freedom. A framework for deawicg dynamical properties
of generic polarization phenomena has been built around this[idea [Slabstiute X—distribution
Pa(X) andcorrelation coefficient of polarization{being the associated quantifiers.

Our main point here is thatynamical chiralityof near—zeromodes, quantified By, may
provide for a dynamical spectral signature faithfully distinguishing chitattgken situation from
the symmetric ongfJ1]. Specifically, in the broken case, a band of locallyipethmodes@a >
0) occupies the spectral region around the surface of the Dirac se ththerwise anti—chiral
(Ca < 0). In transition to the symmetric case, the polarized band dissolves into tlemddhere
is only anti—chirality. Picturing this in reverse, and using properly defiresgo/ables, SChSB in
QCD-like theories takes on the meaningzohdensing chiralityfl]].

There are two points we wish to highlight with regard to this scenario. Firstydives a
natural scale, namely the width of a polarized band:cthieal polarization scale\¢ [B]. In view
of the above/\¢, can in fact be viewed as an “order parameter” of SChSB, and its exésteas
several interesting consequencls [1]. Secondly, like mode corbenszhirality condensation
is not necessarily tied to the masslessness of dynamical quarks. Indedd,condensation is

1Since this presentation &bnfinement Xa more comprehensive account of this work has been given ir{E}ef.
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Figurel: Rays of equal polarization in the sample spacé%{qi,qz). The solid blue lined, = g;) consists
of points with zero polarization. Relative polarizationvaiious samples is a uniquely defined concept.

equivalent to existence eflencechiral condensate irrespective of dynamical quark masses. The
meaning of our proposal is similar in that dynamical chirality condenses\ant generated if
and only if valence condensate is non—zero, and thus whenever medesellies condense.

In this presentation, we discuss the concept dynamical chirality and éocseme of the basic
building blocks of the above picture, namely on establishingMgts a true dynamical scale and
that the situation in N=2+1 QCD is consistent with it.

2. Dynamical Polarization and Dynamical L ocal Chirality

We first summarize some needed basic elements of the dynamical polarizatiewiork [5].
Assume that a probabilistic object takes values in the linear space that cetdm®mposed into a
pair of equivalent orthogonal subspaces, so that its “san@@lin be written aQ = Q; + Q, with
Q1-Q2 = 0. Dynamics of this object is encoded in its probability distribution functién(Q1, Q2),
and our goal is to adjudicate whether it supports outcomes favoring asyimpegticipation of the
two subspaces (polarization) or the symmetric participation (anti—polarizatdote that we are
not interested in the overall preference of one subspace over the(gliblgal polarization), which
is non—existent for cases studied here that satigfyQq, Qz) = 7 (Q2,Q1). Rather, we are inter-
ested in characterizing “sample polarization”, quantifying asymmetry withotimdigshing which
subspace happens to prevail in any gi@niVhen samples are labeled by position coordinates, the
termlocal polarizationbecomes appropriate.

Participation of a given subspace in samf@, Q) is measured by the magnitude of its
componenty = |Q;|, and it is thus sufficient to consider the associated distribution of magnitudes
Z:(Q1,Q2) — Pp(d1,02). The sets of equally polarized points in this restricted sample space are
the raysap = tgs, as shown in Fig[]1. Since the subspaces are equivalent, there is aefiaked
ray o = i of unpolarized samples, and the degree of polarization has to grow synatig@ieay
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from this reference. However, other than that, the assignment of patiarizvalue to any given
ray — the polarization function — is not fixed a priori, and polarization attarstics of dynamics
Z:(Q1,Q2) will in general depend on it.

While it is not possible to uniquely assign the value of polarization to samplels,asuthose
shown in Fig[]JL, we can say with certainty e.g. tBais more polarized thaf, thatS; is more
polarized tharss, or thatS, is less polarized thaBy. This has more than trivial meaning when
samples to be compared come from two different dynamics, namely two diffdigtributions
Pv(q1,02). In that case this is telling us that relative polarization characteristics loassaimple—
wise comparisons are absolute: they are invariant under the choicéadfption function [[b].

Our goal is to define @ynamicalpolarization measure where “dynamical” meamsrela-
tional and invariant in the above sense. The essence of correlation is thagfieisrced to sta-
tistical independence, which leads us to sample—wise comparisons with tlogasesd distribution
28(a1, ) of independent components. More precisely(if) = [dd Z%,(q,d') = [dd Zs(d,q)
is the marginal distribution of a component, thef(d:1,02) = p(d1)p(de). The simplest dy-
namical characteristic of polarization can then be constructed as follomagime simultaneous
drawings of samples from#(qz,02) and (01, dz) and keeping score of their polarization com-
parisons. The result of such experiment is the probalilitghat a sample produced by dynamics
under consideration is more polarized than sample from uncorrelated dlistnbThe correlation
coefficient of polarization is then

Ca=2a—1 Cac[-11] (2.1)

Thus, polarization—enhancing dynami¢s (> 1/2) are positively correlated while polarization—
suppressing dynamicE f < 1/2) are anti—correlated. One can also define a more detailed dynami-
cal polarization measure, namely absokitalistributionPa(X), based on differential comparisons

to statistical independencg [5].

The above can be straightforwardly applied to study of dynamical lodedliti in Dirac
eigenmodes. Indeed, the two subspaces in question are the left anshiighrial subspace and so
Q=Q1+Q2— Y(X) = YL(X)+ Yr(X). The collection of local valueg/(x) in a given mode or
a group of modes provide samples representing the distribie(Q;,Q-). To characterize the
Dirac spectrum in terms of dynamical local chirality, we define the averagelation of polariza-
tion at scalé\ in finite volumeV as

Y(3(A —A)Cak)my

A,MV)
CaA(AM.V) = X _ Pan(A.M, 22
SR Ty NI TV XA &2
whereCy is the correlation ok-th mode M labels dynamical quark masses, and
1
Pch(A,M,V) = v Z<5()\ —A)Cak)myv (2.3)

is the spectral polarization density defined in analogy to usual spectrsitglp(A ) of modes|[IL].
In this formal language, the theory exhibits mode condensation jf lighmy . p(A,M,V) > 0,
and it exhibitsdynamical chirality condensatiaifilim , _olimy_.. pcn(A,M,V) > 0. Note that the
negativity of the latter would imply condensation of anti—chirality.
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Figure 2: Top: behavior ofCa(A) andpcn(A) in quenched QCD (see text). Bottom: the same pFRi1
QCD with domain wall fermions and overlap Dirac probe (se¢)te

3. The Reality of Chiral Polarization Scale

The band of chirally polarized modes with associafed have first been seen in quenched
QCD [B], in a calculation at fixed physical volume. There is little doubt thanghed QCD is
a mode—condensing theory, being studied in that regard since the earyyofenumerical lattice
QCD (see e.g. Ref[][7]). However, to establish the existence of logalithcondensation, and the
reality of chiral polarization scale especially, an infinite volume asymptotic$ohias examined.

To do this, we have computed low-lying overlap—Dirac spectra 8r208, 24* and 32 lattices
of quenched QCD with Wilson gauge actionfat= 6.054. Invoking reference scaitg = 0.5fm,
this corresponds to lattice spaciag= 0.085fm [8]. The parameters of the overlap Dirac operator
in all spectral calculations discussed in this talk were set+tol andp = 26/19. We computed
200 eigenmodes with smallest real part and non—negative imaginary fphe eigenvalue, for
100 configurations from each ensemble. Correlation coeffi€igritas then been calculated for
each eigenmode. To evaluate the averagek (£.2), (2.3) atAjitbe eigenmodes from the interval
(A —=0A/2,A + A /2) were used.

In Fig.[2 (top) we show the behavior 8 (A ) andpcn(A ) for the ensemble with largest volume.
The scenario described in the Introduction is indeed observed with clifiyed band of chirally
polarized modes and the associafegl. Note that sincgd(A) = pen(A)/Ca(A) , the fact that
both of the above dependencies tend to non—zero value at Arisationsistent with the expected
mode condensation property. Their positivity means that chirality condesseell. The volume
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Figure 3: Volume dependence @, and its infinite volume extrapolation in quenched QCD (s&b.te

dependence o\, is shown in Fig[B. The curvature of the data away from the infrared fgutof
shown for comparison, suggests quite convincingly thatis indeed a finite scale in the theory.
The fit utilizing constant plus arbitrary power reveals a strong preteréor cubic dependence,
and this power was then used to facilitate the infinite volume extrapolation shown.

4. Light Dynamical Quarks

Having established the viability of chiral polarization scale as a dynamicallgrgesd feature
of quenched QCD, it is now interesting to inquire whether the proposetkction between mode
condensation and chiral polarization of Dirac modes survives thetefiétght dynamical quarks.
The Nf=2+1 QCD at zero temperature is a suitable framework for such investigadtbrbecause
it is close to the “real world” QCD when quark masses are adjusted acgtyrdamd because it is
expected that this theory condenses for generic quark masses, igdludie chiral limit.

To investigate this issue, we analyzed overlap Dirac eigenmodes in the @2 ensembles
of dynamical N=2+1 domain wall fermions generated by RBC/UKQCD collaboratiphs [9F Th
quark mass parametevs= (m, m,m, > m) in these ensembles have the heavy quark mass fixed
atmya = 0.03 while the light masses vary to bga = 0.008, 0.006, 0.004. The lattice scade=
0.085 fm) was set via the physical value of fdebaryon. Consequently, the heavy mass is fixed
approximately at the strange quark value. The pseudoscalar mesors@ssseated with the three
ensembles amm,; = 397, 350 and 295 MeV.

In Fig. 2 (bottom) we plot the functior@a(A) andp(A) for the ensemble with smallest light
guark mass. We observe the behavior qualitatively similar to the quenchedatbeit with chiral
polarization scale that is somewhat smaller. The situation for the heavier light qnasses is the
same, even quantitatively. Indeed, to assess the trend in the directioiradfliohit, we show in
Fig.[ the mass dependence’ef, which turns out to be entirely flat. This suggests that chiral limit
may not induce any dramatic effects beyond lower\grelative to quenched theory, as is already
apparent in our data.
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Figure 4: The light quark mass dependence’\gf, in N;=2+1 lattice QCD with domain—wall fermions and
its chiral extrapolation via a constant (see text).

The experience with continuum limit extrapolation at fixed volufije [5], combiwigtd trends
in infinite volume extrapolation shown here, suggest the value of chiratipaln scaleN\g, ~
75-80 MeV both in the chiral limit and at the physical point. The existendgyis expected to be
independent of the regularization (lattice action) used to define the contiNgg2+1 theory, but it
remains to be seen how large the regularization—dependent spreaceivdhess is. Nevertheless,
given that/\¢, is a dynamical characteristic, the variation may in fact be very small.

5. Discussion

The main message of this work is that quark—gluon setups relevant frvield” at zero
temperature, such asiN2+1 QCD, have Dirac spectra with striking dynamical feature: there is a
band of chirally polarized low—energy modes extending up to a well-defipeamical scalé\q.
Such behavior appears to take place at generic quark masses, inétuttieghiral limit, thus being
a feature of spontaneous chiral symmetry breaking in that theory. Tées\dtion provides a useful
constraint for possible model descriptions of low energy QCD, but alsecassary ingredient in
deeper understanding of SChSB’s dynamical origin. Indeed, sinaek glynamics at small light
masses is dominated by low—lying modes we can conclude that chirally brolaek dynamics is
“facilitated” by chirally polarized modes.

As can be seen from our discussion, chiral polarization of modes duexise due to light
qguarks. In fact, light quarks make it milder. In that regard, chiral gzddion appears to be tied to
mode condensation propertyalencechiral condensate) which is strongest in pure glue QCD and
quarks effects weaken it since they slow down the running of couplingrtbarger values at low
energy. As emphasized in Reff] [1], this meshes well with presumed freesdikavior of modes
at high energies, since free fermions are perfectly chirally anti—pothriZerning on the gauge
interaction weakens this order even at high energies, but potentiallisesthe dynamical trend at
long distances due to rising coupling. The observed existence of chicdyized band and\, in
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quenched QCD means that this indeed happens: chiral dynamical figsfméimodes qualitatively
change af\¢,, with modes becoming chirally polarized and near—zeromodes conderisoig.
quark effects in “real world” QCD at zero temperature are not ableterse this, resulting in
SChSB via condensation of dynamical chirality.

Given the above considerations, it is hard to avoid thinkind\gfas a natural scale of bro-
ken chiral dynamics, be it current quarks or valence: it is a scale ethwhe representative of
guark dynamics, namely Dirac eigenmode at that scale, starts chirally r@sgmlbepresentative
of purely broken quark dynamics, namely a strict near—-zeromode. Téuswould be further
strengthened if mode condensation and chiral polarization only occemmadtaneously within
the realm of QCD-like theories, which we take to be SU(3) gauge theoriesavtitnary number
of fermionic species in fundamental representation, and at arbitrary tatope Indeed, assum-
ing this is true, then the proposed role of chiral polarization would be imbéoethe nature of
quark—gluon interaction with., acquiring a fundamental meaning directly related to mechanism
of SChSB. In Ref.[[[L] we have conjectured that the above mode ceatien—chiral polarization
conjecture indeed holds. While there are many corners for explicit shafcthis relationship, it
appears to hold with regard to thermal agitatign{[3,[1D, 11], at least inoheerQCD.

The above scenario has interesting conceptual and practical implicatemssed in some
detail in Ref. [1]. They mostly have to do with novel ways of characteritingken chiral dy-
namics. Here we limit ourselves to pointing out that the proposed dynamidglhirtarns chiral
polarization scalé\q, into a non—traditional “order parameter” of SChSB. Among other things,
this has a practical utility in that it is a strictly well-defined concept even at funkeme. Thus,
for a given finite system, one can uniquely (and cheaply) delineate tlmnsegf parameter space
characterized by chiral polarization and non—-z&gg. These then turn into the regions of broken
chiral dynamics, or regions of mode condensation, in the infinite volume limit.
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