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Using the eigen-mode of the QCD Dirac operaibe A DH, we develop a manifestly gauge-

covariant expansion and projection of the QCD operators such as the Wilson loop and the
Polyakov loop. With this method, we perform a direct analysis of the correlation between con-
finement and chiral symmetry breaking in lattice QCD Monte Carlo calculations. Even after
removing the low-lying Dirac modes, which are responsible to chiral symmetry breaking, we
find that the Wilson loop obeys the area law, and the string tension or the confinement force is
almost unchanged. We find also that the Polyakov loop remains to be almost zero even without
the low-lying Dirac modes, which indicates thg-dnbroken confinement phase. These results
indicate that one-to-one correspondence does not hold between confinement and chiral symmetry
breaking in QCD.
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1. Introduction: relation between confinement and chiral symmetry breaking

Color confinement and chiral symmetry breakifj &re striking nonperturbative phenom-
ena of quantum chromodynamics (QCD). To clarify their correspondence is an important subject
[2 3 [], however, their relation is not yet clarified directly from QCD. The strong correlation be-
tween them has been suggested by the simultaneous phase transitions of deconfinement and chiral
restoration in lattice QCD both at finite temperatiegdnd in a small-volume bof].

The close relation between confinement and chiral symmetry breaking has been also suggested
in terms of the monopole degrees of freed@d], which topologically appears in QCD by taking
the maximally Abelian (MA) gaugdg [ []. Actually, by removing the monopoles, confinement
and chiral symmetry breaking are simultaneously lost in lattice Q& af schematically shown in
Fig.1. This indicates an important role of the monopole to both confinement and chiral symmetry
breaking, and these two nonperturbative QCD phenomena seem to be related via the monopole.
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Figure 1: The role of monopoles to nonperturbative QCD. In the MA gauge, QCD becomes Abelian-like due
to the large off-diagonal gluon mass of about 1GBY §nd monopole current topologically appedddd).

By the Hodge decomposition, the QCD system can be divided into the monopole part and the photon part.
The monopole part has confinemdsg}, chiral symmetry breakindg and instantondI[d], while the photon

part does not have all of them. Thus, lattice QCD studies indicate the essential contribution of monopoles to
both confinement and chiral symmetry breaking. However, the direct relation between them is unclear.

As a possibility, however, to remove the monopoles may be “too fatal” for nonperturbative
properties. If this is the case, nonperturbative phenomena are simultaneously lost by their removal.

In fact, if only the relevant ingredient of chiral symmetry breaking is carefully removed, how
will be quark confinementTo obtain the answer, we perform a direct investigation between con-
finement and chiral symmetry breaking, using the Dirac-mode expansion and projédlion [

2. Gauge-invariant formalism of Dirac-mode expansion and projection

In this paper, using the eigen-mode of the QCD Dirac operbter yDH, we propose a
manifestly gauge-covariant expansion/projection of QCD operators such as the Wilson loop and
the Polyakov loop, and study the relation between confinement and chiral symmetry brédking [
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2.1 Eigen-mode of Dirac operator in lattice QCD

In lattice QCD with spacing, the Dirac operatoD /~ y, D, is expressed withl,,(x) as
1 4
Dyy = Eluzl Yu [Uu(x)@wﬁ,y_ufu(x)éxfﬂ,y] ) (2.1)

withU_,(x) = UJ(X— [1). Adopting hermitiary—matricesy[ﬁ =y, D is anti-hermitian and satisfies
ID;X = —Dyy. The normalized eigen-stajte) of the Dirac operatob is introduced as

D|n) = iA|n) (2.2)

with A, € R. Because of y5,D} = 0, the statgs|n) is also an eigen-state Bfwith the eigenvalue
—iAn. The Dirac eigenfunctiog,(x) = (x|n) obeysDi(X) = iAnn(X), and its explicit form of
the eigenvalue equation in lattice QCD is

4
o 3 ValU (PO ) U0 nlx— 0] = a0 23)
u=1

The Dirac eigenfunctioi,(x) can be numerically obtained in lattice QCD, besides a phase factor.
According toU,,(x) — V (X)U, (x)VT(x+ f1), the gauge transformation gk(x) is found to be

Un(X) =V (X)Yn(X), (2.4)

which is the same as that of the quark field. To be strict, for the Dirac eigenfunction, there can
appear an irrelevamt:dependent global phase factoréfsV!, according to the arbitrariness of the
definition of Yy (X).

From the Banks-Casher relatidi], the quark condensateq), the order parameter of chiral
symmetry breaking, is given by the zero-eigenvalue densidy of the Dirac operatoD?/

(@a) = — lim_fim 710(0), (2.5)

where the spectral densify(A ) is given byp(A) = & 5,(8(A — A,)) with space-time volum¥'.
Thus, the low-lying Dirac modes can be regarded as the essential modes responsible to spontaneous
chiral-symmetry breaking in QCD.

2.2 Operator formalism in lattice QCD

The recent analysis of QCD with the Fourier expansion of the gluon field quantitatively reveals
that quark confinement originates from low-momentum gluons below about 1GeV in both Landau
and Coulomb gauge§J. This method seems powerful but accompanies some gauge dependence.
To keep the gauge symmetry manifestly, we take the “operator formalism” in lattice QD [

We define the link-variable operatﬁp by the matrix element of

(XUuly) = Up(X) 8 ny- (2.6)

The Wilson-loop operatddV is defined as the product ﬂfu along a rectangular loop,

pd

1

k
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For arbitrary loops, one find§E:l fix = 0. We note that the functional trace of the Wilson-loop
operatoiV is proportional to the ordinary vacuum expectation vahe of the Wilson loop:

TrTW = trZ(X\Wlx) :trz<X’0ulouz“UuN’X>
X X

=t Y (xa|Up %) (%2[Upy [Xa) (Xa|Upss %) - - (¥ni[ Oy [¥a)

X1,X2,, XN
. R A 2 . NflA .
= trZ<X‘UIJ1|X+ “1><X+ IJ1|U112’X+ z [Jk>-'-<X—|— Z IJk|UIJN|X>
X k=1 k=1
2 R NflA
= 3 UL (U Ut 5 i) U (X 5 i)} = (W) Tr1 (28)
k=1 k=1

Here, “Tr” denotes the functional trace, and “tr” the trace over SU(3) color index.
The Dirac-mode matrix element of the link-variable operalplcan be expressed with,(x):

(MO ) = 3 (mix) (xUp|x+ ) (x+ fn) = 5 Y (U () (x4 1) (2.9)

X

Although the total number of the matrix element is very huge, the matrix element is calculable and
gauge invariant, apart from an irrelevant phase factor. Using the gauge transfori@ad)omé
find the gauge transformation of the matrix elemenfid [

(MUOuIn) =S (U (X) gn(x+ 1)
X
= S ROV () -V (UL (VT (x4 1) -V (x+ 1) (X + 1)
X
= 5 YLOOUu () n(x+ 1) = (m|Uy[n). (2.10)
X
To be strict, there appears afdependent global phase factor, corresponding to the arbitrariness of
the phase in the basjis). However, this phase factor cancelsea¥ne% = 1 betweerjn) and(n|,
and does not appear for QCD physical quantities including the Wilson loop.
2.3 Dirac-mode expansion and projection

From the completeness of the Dirac-mode bagjgn) (n| = 1, arbitrary operato® can be
expanded in terms of the Dirac-mode bdsisas

6= ZZ‘ (n|G|m)(m (2.11)

which is the theoretical basis of the Dirac-mode expangldh Note that this procedure is just the
insertion of unity, and is of course mathematically correct.

Based on this relation, the Dirac-mode expansion and projection can be defined. We define the
projection operatoP which restricts the Dirac-mode space,

P= Z\|n><n], (2.12)
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whereA denotes arbitrary set of Dirac modes Arthe arbitrary phase cancels betwésrand (n|.
One findsP?2 = P andP' = P. The typical projections are IR-cut and UV-cut of the Dirac modes:

b= 3 i, Pw= 3 Il (2.13)
[An|>AR |An|<Auv

Using the projection operat#t, we define the Dirac-mode projected link-variable operator,

=PUP= 5 5 Im(mUyu[n)(n|. (2.14)

meAne
During this projection, there appears some nonlocality in general, but it would not be important
for the argument of large-distance properties such as confinement. From the Wilson-loop operator
W = R, Uy, we define the Dirac-mode projected Wilson-loop opersitr= L, Uf;, and
rewrite its functional trace in terms of the Dirac basisEH [

2

N
TrW? = Tr [V, =TrULUL - Ug, = Tr PU,PUL,P--- POy P
k=1

=tr Y (MU n2)(n2Ug,Ing) - - (n|Upy ), (2.15)
ny,Ng,--- NNEA
which is manifestly gauge invariant. Here, the arbitrary phase factor cancels betweamd (ny|.
Its gauge invariance is also numerically checked in the lattice QCD Monte Carlo calculation.
From TrVVP(R,T) on theR x T rectangular loop, we define Dirac-mode projected potential,

VP(R) = — Ilim %In{Ter(R,T)}. (2.16)

T—o0

On a periodic lattice 0¥ = L° x N;, we define the Dirac-mode projected Polyakov |dbfi ]

; 1_ N 1 . 1 . . .
(Lp™) =5, _I'[Uf =5y MUY =tr 5 (m|Ualng)(no|Ualng) - - (mwy [Us|ma), (2.17)
1=

ny,..,NN €A

which is also manifestly gauge-invariant.

3. Analysis of confinement in terms of Dirac modes in QCD

In this paper, we mainly consider the removal of low-lying Dirac modes, i.e., the IR-cut case.
Using the Dirac-mode expansion and projection method, we calculate the IR-Dirac-mode-cut Wil-
son loop TWF(R, T), the IR-cut inter-quark potenti®(R), and the IR-Dirac-mode-cut Polyakov
loop (Lp)r in @ gauge-invariant mann€t]]. Here, we can directly investigate the relation between
chiral symmetry breaking and confinement as the area-law behavior of the Wilson loop, since the
low-lying Dirac modes are responsible to chiral symmetry breaking.

As a technical difficulty, we have to deal with huge dimensional matrices and their products.
Actually, the total matrix dimension ¢im|U,|n) is (Dirac-mode numbet) On theL* lattice, the
Dirac-mode number ik* x N¢x 4, which can be reduced to hé x N, using the Kogut-Susskind
techniquelf. Even for the projected operator, where the Dirac-mode space is restricted, the matrix
is generally still huge. At present, we use a small-size lattice in the actual lattice QCD calculation.
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We use SU(3) lattice QCD with the standard plaquette actigh-at5.6 (i.e.,a ~ 0.25fm) on
6* at the quenched level. The periodic boundary condition is imposed for the gauge field. We show
in Fig.2(a) the spectral densip(A ) of the QCD Dirac operatdD./The chiral property obleads
top(—A)=p(A). Figure 2(b) is the IR-cut Dirac spectral dengiii (A ) = p(A)O0(|A | — Ar) with
the IR-cutoffAigr = 0.5a! ~ 0.4GeV for the Dirac eigen-mode. Note that, using the eigenvalue
An, the quark condensatgg)r with the IR-cutAp, is expressed af]

<ch>/\IR =7\

An>AR

2m
AZ+me

(3.1)

The chiral condensate is largely reduced @, /(qqg) ~ 0.02 by removing the low-lying Dirac

modes in the physical case w§ ~ 5MeV, as shown in Fig.2(c).
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Figure 2: (a) The Dirac spectral densip/(A ) in lattice QCD ai3=5.6 and 8. The volumeV is multiplied.
(b) The IR-cut Dirac spectral densityr (A) = p(A)0(|A| — Air) with the IR-cutoffAir = 0.5a~1 ~ 0.4GeV.
(c) The lattice result ofqq)a./(qd) in the case of IR cuf\r = 0.5a71, plotted against the current quark
massm. A large reduction ofqg)a/(qd) ~ 0.02 is found in the physical case wf~ 0.006a 1 ~ 5MeV.

Figure 3 shows the IR-Dirac-mode-cut Wilson lodP(R,T)) = TAWWP(R T), the IR-cut
inter-quark potential/”(R), and the IR-Dirac-mode-cut Polyakov lodpp)r, after the removal
of the low-lying Dirac modes. These Dirac-mode projected quantities are obtained in lattice QCD
with the IR-cut ofpir(A) = p(A)8(|A| — ARr) With the IR-cutoffAigr = 0.5a~1 ~ 0.4GeV.
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Figure 3: The attice QCD results after the removal of low-lying Dirac modE®, [which givespr(A) =
p(A)B(JA| — Ar) with the IR-cutoff Air = 0.5a~1 ~ 0.4GeV. (a) The IR-cut Wilson loop TWP(R T)

(circle) after removing the IR Dirac modes, plotted agaRst T. The slope parameter” is almost the

same as that of the original Wilson loop (square). (b) The IR-cut inter-quark potential (circle), which is
almost unchanged from the original one (square), apart from an irrelevant constant. (c) The scatter plot of
the IR-Dirac-mode-cut Polyakov logjhp)r: its zero-value indicateZz-unbroken confinement phase.
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Remarkably, even after removing the coupling to the low-lying Dirac modes, which are re-
sponsible to chiral symmetry breaking, the IR-Dirac-mode-cut Wilson loop obeys the area law as
(WP(RT)) 0 e °RT and the slope®, i.e., the string tension, is almost unchangea8s- o.

As shown in Fig.3(b), the IR-cut inter-quark potent¥al(R) is almost unchanged from the original
one, apart from an irrelevant constant. Also from Fig.3(c), we find that the IR-Dirac-mode-cut
Polyakov loop is almost zerdlp) g ~ 0, which mean&s-unbroken confinement phase. In fact,
confinement is kept in the absence of low-lying Dirac modes or the essence of chiral symmetry
breaking[[LT]. This result seems consistent with Gattringer’s formidlaaihd Lang’s resulfl4].

We also investigate the UV-cut of Dirac modes in lattice QCD, and find that the confining force
is almost unchanged by the UV-c{], as shown in Fig.4. This result seems consistent with the
lattice result of Synatschke-Wipf-Langfe[@. Furthermore, we examine “intermediate(IM)-cut”
of Dirac modes, and obtain almost the same confining f@de &s shown in Fig.5.
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Figure 4: (a) The UV-cut Dirac spectral densipyy (A) = p(A)8(Auy — |A]) with Ayy = 2a~1 ~ 1.6GeV.

(b) UV-cut Wilson loop TWP (R, T) (circle) after removing the UV Dirac modes, plotted agaRstT. The
slopecoP is almost the same as that of the original Wilson loop (square). (c) The UV-cut inter-quark potential
(circle), which is almost unchanged from the original one (square), apart from an irrelevant constant.

From these lattice QCD results, there is no specific region of the Dirac modes responsible to
confinement. In other words, we conjecture that the “seed” of confinement is distributed not only
in low-lying Dirac modes but also in a wider region of the Dirac-mode space.

Our lattice QCD results suggest some independence between chiral symmetry breaking and
color confinement, which may lead to richer phase structure in QCD. For example, the phase tran-
sition point can be different between deconfinement and chiral restoration in the presence of strong
electro-magnetic fields, because of their nontrivial effect on chiral symniEgty [
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