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1. Introduction

In high-energy physics, transverse-momentum-dependent parton distribution functions (TMD-
PDFs), with or without spin dependence, have proved to be an essential quantities for unraveling
the internal structure of protons [1], as well as being an ingredients representing hadronic physics
in a wide class of factorized physical observables. For example spin-dependent transverse momen-
tum asymmetries provide a test for our understanding of the internal spin, angular momentum and
3-dimensional structure of the hadrons. A set of experiment will provide important pieces of infor-
mation: HERMES, COMPASS, JLab, Belle, BNL, TeVatron, LHC and possibly EIC in the future,
just to cite some of them. A relevant issue for the extraction of TMDs is that each experiment work
at different energy, so that in order to compare their results it is fundamental to understand the evo-
lution of TMDs. On the theoretical side, Sivers [2] and Collins [3] asymmetries have been intensely
studied, and have attracted much attention recently [4, 5, 6, 7, 8, 9, 10] in contexts with fundamental
theoretical concepts. Basically, some of the observed spin-asymmetries are linked to the presence
of gauge links in non-collinear non-local correlators needed to maintain gauge invariance.

A complete formalism for the treatment of TMDs is still being developed [11, 12, 13, 14].
In this paper we concentrate on some properties of the evolution of the TMDs which have been
evidenced in [15].

Definition of Quark-TMDPDFs: The definition of TMDPDFs is strictly related to the proof
of factorization in physical processes. For the moment such proofs exist only for the simplest
hadronic processes like Drell-Yan (DY), Semi Inclusive Deep Inelastic Scattering (SIDIS) and
e+e− → 2 j. In order to fix the ideas we refer here to DY processes. In impact parameter space
such factorization theorem for the hadronic tensor can be schematically written as:

M̃ = H F̃f/P F̃f̄/P, (1.1)

where H is the hard coefficient encoding the physics at the probing scale Q which is a polynomial
of only log(Q2/µ2). The functions F̃f/P and F̃f̄/P are the TMDs in impact parameter space.

The TMDPDFs of a polarized hadron collinear with the +z direction with momentum P and
spin ~S are defined extending the work done in [11, 13], as

F̃n,αβ = Φ̃
(0)
n,αβ

(η)

√
S̃(η ,η) , (1.2)

where η is a generic rapidity regulator that separates collinear from soft modes. Φn,αβ stands for
a purely collinear matrix element, i.e., a matrix element which has no overlap with the soft region
[16], and it is given by the bilocal correlator

Φ
(0)
n,αβ

= 〈P~S|
[
ξ̄nαW T

n
]
(0+,y−,~y⊥)

[
W T †

n ξnβ

]
(0) |P~S〉 . (1.3)

The soft function S which encodes soft-gluon emission is given by

S = 〈0|Tr
[
ST †

n ST
n

]
(0+,0−,~y⊥)

[
ST †

n ST
n

]
(0) |0〉 . (1.4)

To obtain the eight leading-twist quark-TMDs [17, 18], represented generically by F̃ below, one
can simply take the trace of F̃αβ with the Dirac structures n/

2 , n/γ5
2 and iσ j+γ5

2 for unpolarized, lon-
gitudinally polarized and transversely polarized quarks, respectively, inside a polarized hadron.
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The superscript T indicates transverse gauge-links Tn(n), necessary to render the matrix elements
gauge-invariant [19, 20]. The definitions of collinear (Wn(n)), soft (Sn(n)) and transverse (Tn(n))
Wilson lines for DY and DIS kinematics can be found in [11].

The anomalous dimension of each TMDs for the unpolarized case was given in [11]up to 3-
loop order based on a factorization theorem for qT -dependent observables in a Drell-Yan process.
For the polarized case it can deduced at the same order considering the following facts. The hard
coefficient H is built, perturbatively, by considering virtual Feynman diagrams only, i.e., no real
gluon emission has to be considered. Moreover, the quantity H has to be free from infrared physics,
no matter how the latter is regularized. This should be the case whether one works on or off-the-
light-cone. The virtual contributions of the collinear functions Φ are also spin independent, and the
soft function is spin independent. As a conclusion the scaling behavior of H is spin independent.
Since the factorization theorem given above holds, at leading twist, also for spin-dependent ob-
servables, one can apply the same arguments, based on renormalization group invariance, as for the
unpolarized case, to get a relation between the anomalous dimensions of F̃ and H, i.e., γF =−1

2 γH ,
where γH = 2Γcusp ln(Q2/µ2)+2γV is known at 3-loops level [21, 22, 23]. This crucial result can
be automatically extended to all TMDs defined in Eq. (1.2), since the anomalous dimension is
independent of spin structure.

2. Evolution Kernel

Starting from Eq. (1.2) the evolution of a generic quark-TMDPDF from an initial scale Qi to a
final scale Q f is given by

F̃(x,b;Q f ) = F̃(x,b;Qi) R̃(b;Qi,Q f ), (2.1)

where the evolution kernel R̃ is

R̃(b;Qi,Q f ) = exp

{∫ Q f

Qi

dµ̄

µ̄
γF

(
αs(µ̄), ln

Q2
f

µ̄2

)}(
Q2

f

Q2
i

)−D(b;Qi)

. (2.2)

The D term can be obtained by noticing that the renormalized F̃ has to be well-defined when
its partonic version is calculated pertubatively. This means that all divergences, other than genuine
long-distance ones, have to cancel. This fundamental statement – that rapidity divergences cancel
when the collinear and soft matrix elements are combined according to Eq. (1.2)– allows one to
extract all the Q2-dependence from the TMDs and exponentiate it with the function D, [11] thereby
summing large logarithms of ln(Q2/q2

T ). Applying the renormalization group invariance to M̃ we
get dD/dlnµ = Γcusp by which we extract, for all the quark spin-dependent TMDs the function D
at NNLO from the known cusp anomalous dimension at three-loops [23].

The function D in Eq. (2.2) contains large logarithms of the form L⊥ = ln Q2
i b2

4e−2γE
that have to be

resummed. The large logs appear in the Fourier transform of Eq. (2.2) and spoil the perturbative
expansion of D when αsL⊥& 1. It is possible however to increase the convergence of D resumming
all such logs in the following way. Matching the expansion

D(b,Qi) =
∞

∑
n=1

dn(L⊥)an (2.3)
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where a=
(

αs(Qi)
4π

)
to the following ones: Γcusp(αs)=∑

∞
n=1 Γn−1an and β (αs)=−2αs ∑

∞
n=1 βn−1an

one gets the recursive differential equation

d′n(L⊥) =
1
2

Γn−1 +
n−1

∑
m=1

mβn−1−mdm(L⊥) , (2.4)

where d′n ≡ ddn/dL⊥. It is possible to solve this equation recursively separating terms of order
αm

s (αsL⊥)n, with 0≤ m≤ n. This can be seen writing explicitly the firsts solutions of Eq. (2.4)

d1(LT ) =
Γ0

2β0
(β0LT )+d1(0) ,

d2(LT ) =
Γ0

4β0
(β0LT )

2 +

(
Γ1

2β0
+d1(0)

)
(β0LT )+d2(0) ,

d3(LT ) =
Γ0

6β0
(β0LT )

3 +
1
2

(
Γ1

β0
+

1
2

Γ0β1

β 2
0

+2d1(0)
)
(β0LT )

2

+
1
2

(
4d2(0)+

β1

β0
2d1(0)+

Γ2

β0

)
(β0LT )+d3(0) . (2.5)

The coefficients dn(0) can be fixed by matching with the perturbative calculation of the Drell-Yan
cross-section [24, 15]. After some algebra, we can express the coefficients dn in Eq. (2.3) in the
following way,

2dnan =
Γ0

β0

Xn

n
+aXn−1

(
Γ0β1

β 2
0

(
−1+H(1)

n−1

)
|n≥3 +

Γ1

β0
|n≥2

)
+a2Xn−2

×
(
(n−1)2d2(0)|n≥2 +(n−1)

Γ2

2β0
|n≥3 +

β1Γ1

β 2
0

sn|n≥4 +
β 2

1 Γ0

β 3
0

tn|n≥5 +
β2Γ0

2β 2
0
(n−3)|n≥4

)
+ ... ,

(2.6)

where X = aβ0L⊥, H(r)
n is the r-th order Harmonic Number function of n and ψ(n) is the digamma

function of n and

sn = (n−1)H(1)
n−2 +

1
2
(5−3n) ,

tn =
1
2

[
(1−n)H(2)

n−1 +n+1+(n−1)(ψ(n)+ γE −2)(ψ(n)+ γE)
]
. (2.7)

Using Eq. (2.3) we can now perform the resummation of large logarithms in the D, obtaining,

DR =− Γ0

2β0
ln(1−X)+

1
2

(
a

1−X

)[
−β1Γ0

β 2
0

(X + ln(1−X))+
Γ1

β0
X
]

+
1
2

(
a

1−X

)2[
2d2(0)+

Γ2

2β0
(X(2−X))+

β1Γ1

2β 2
0
(X(X−2)−2ln(1−X))+

β2Γ0

2β 2
0

X2

+
β 2

1 Γ0

β 3
0

+121X6−188X5 +13X4 +30X3 +12X2 (1−Li2(X))+12X(X +1)ln(1−X)

24X2

+
β 2

1 Γ0

2β 3
0
(1−X)2

∞

∑
n=5

Xn−2(n−1)
[
H(1)

n−1

]2
]
+ ... , (2.8)
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For the last term in this expression we have found an analytic form of the sum of the series by using
the approximation H(1)

n−1 = ln(n)+ γE + 1
2n −

1
12n2 +

1
120n4 − 1

256n6 + ... which is precise enough for
our purposes.

This resummation in n of each term of Eq. (2.3) is valid for |X |< 1, however when analytically
continued through Borel-summation its validity is extended to X → −∞, which corresponds to
b→ 0. The maximum value of b where each term of this series can be used, corresponding to
X = 1, is bX = 2e−γE/Qi exp[2π/(β0αs(Qi))].

It is interesting then to study the behavior of the kernel when the impact parameter approaches
bX , being this the most subtle region. Using Eq. (2.8) we get the asymptotic expression of DR when
X . 1, up to NNLL,

DR|X→1− =−
Γ0

2β0
ln(1−X)

[
1+
(

a
1−X

)
β1

β0
+

(
a

1−X

)2
β1Γ1

β0Γ0
+ ...

]
n f =5
= − Γ0

2β0
ln(1−X)

[
1+
(

a
1−X

)
5.04+

(
a

1−X

)2

34.84+ ...

]
, (2.9)

where we have checked that the last term in Eq. (2.8) with the Harmonic Number function does not
give any divergent contribution. Although we do not have a general proof, we are assuming that
ln(1−X) can be factored out in Eq. (2.9) to all orders in perturbation theory, which is likely to be
the case given that, as we have checked, it holds even up to second order.

Another point to be noticed is that what appears in the evolution kernel is actually the expo-
nential of −DR, which guarantees that when b→ b−X (X → 1−), one has R̃→ 0, due to the sign of
the exponent. For the leading order term in Eq. (2.8) we have

lim
b→b−X

DR
0 = lim

b→b−X

[
− Γ0

2β0
ln(1−X)

]
→+∞ , (2.10)

and this limit is not spoiled by higher order corrections, as it is obvious from Eq. (2.9).
From this discussion we deduce that the kernel with DR appears as a series in powers of

a/(1−X) (once the ln(1−X) is factored out, as in Eq. (2.9)) and that its validity is determined by
the range of convergence of this series. The coefficients of this series are fixed by a combination of
coefficients of the QCD β -function and the cusp anomalous dimension Γcusp, and we have shown
the result up to order [a/(1−X)]2. In order to account for this restricted range of validity of R̃ we
write it as

R̃(b;Qi,Q f ) = exp

{∫ Q f

Qi

dµ̄

µ̄
γF

(
αs(µ̄), ln

Q2
f

µ̄2

)}(
Q2

f

Q2
i

)−DR(b;Qi)

θ(bc−b) , (2.11)

and we study its behavior for various values of bc. In our examples we have considered two possible
values of bc: bc1, such that a/(1−X)< 1, and also bc2, such that a/(1−X)< 0.2.

Notice that the singularity at b = bX , for which X = 1 does not correspond to the Landau pole.
In fact writing ΛQCD = Qi expG(tQi) where tQi ≡−2π/(β0αs(Qi)) and

G(t) = t +
β1

2β 2
0

ln(−t)− β 2
1 −β0β2

4β 4
0

1
t
−

β 3
1 −2β0β1β2 +β 2

0 β3

8β 6
0

1
2t2 + . . . , (2.12)
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0.5
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2.5

R
�

Resummed D at NNLL

Resummed D at NLL

Resummed D at LL

bmax=1.5GeV
-1

bmax=0.5GeV
-1

Evolution Kernel

Qi = 2.4 GeV

Q f = 5 GeV

Figure 1: Evolution kernel from Qi =
√

2.4 GeV up to Qi = 5 GeV within several schemes

we have bX = 2e−γE

ΛQCD
exp(−tQi +G(tQi))>

2e−γE

ΛQCD
. Notice that the evolution kernel allows the resum-

mation of logs between two energy scales Qi and Q f and that the impact parameter b is not related
to these two scales. On the other side it turns out that the range of b where the TMDPDFs are
different from zero is shorter that the interval where R̃ converges. In this way the evolution results
basically independent from non-perturbative models.

Plotting R̃ in the range of b where it overlaps with R̃ in Fig. 1 we can see that the convergence
of R̃ has no problem in going from NLL to NNLL. Moreover in the region b > 6.07, which is not
plotted, R̃ is negligibly small. In Fig. 1 we plot also the same function R̃ according to the usual
CSS method. Within this method, large L⊥ logarithms in the evolution kernel are cancelled by
choosing µb = 2e−γE/b [26]. To avoid the Landau pole that appears when Fourier transforming
back to momentum space, one writes b∗ = b/

√
1+(b/bmax)2 instead of b. bmax is an arbitrary

cutoff that accounts for the separation between perturbative and non-perturbative regimes. We have
implemented the BLNY model to compare our approach with CSS with the following parameters:
gK(b) =

g2
2 b2, with g2 = 0.68 GeV2 for bmax = 0.5 GeV−1 [27] and g2 = 0.184 GeV2 for bmax =

1.5 GeV−1 [25].
Results and Conclusions:

0.0 0.5 1.0 1.5 2.0
kT

0

1

2

3

4

Fup�P

InitialResummedResummedbmax=
bmax=

Initial model

Resummed D at NNLL

Resummed D at NLL

bmax=1.5GeV
-1

bmax=0.5GeV
-1

Evolved unpolarized TMDPDF

Qi = 2.4 GeV

Q f = 5 GeV

x = 0.1

Figure 2: Up quark unpolarized TMD evolved from Qi =
√

2.4 GeV up to Q f = 5 GeV with different
approaches to the evolution kernel.

In order to perform the resummation of large logarithms consistently up to NiLL order (or
Ni−1LO in RG-improved perturbation theory) one needs the input shown in table 1. In our approach
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one takes the resummed series in Eq. (2.8) up to the corresponding order i.

Order Accuracy ∼ αn
s Lk γV Γcusp DR

NiLL n+1− i≤ k ≤ 2n (α i−1
s ) α i

s α i+1
s (αs/(1−X))i

Table 1: Approximation schemes for the resummed TMD, where L = ln(Q2
f /Q2

i ) and α i
s indicates the order

of the perturbative expansion.

The unpolarized quark-TMDPDF at low energy is modeled as a Gaussian: fup/P(x;Qi)exp[−σb2
T ]

with σ = 0.38/4GeV2 [29], and we have taken the MSTW data set for the integrated PDFs [30].
The model-dependence within the CSS resummation method, manifests itself as dependence

on the parameter called bmax and the fit parameters of, for example, the BLNY model (g2). How-
ever, within our method this model-dependence is almost absent. Varying bc from to bc1, bc2, bX

we obtain lines which almost overlap one another and cannot be distinguished in the plots.
As can be seen in Fig. 2, our implementation of CSS is consistent with [4, 5]. From this figure

it is clear that if one uses CSS rather than ours, the value of bmax has to be close to 1.5 GeV−1, as
was indeed found in [25] by a comparison with experimental data. Previous fits did not consider
bmax as a free parameter, but rather set it to 0.5GeV−1 right from the start, fitting just the parameters
of the non-perturbative model.

The definition of quark-TMDPDFs given in Eq. (1.2) and the new approach to determine
the evolution kernel can be extended to gluon-TMDs [31] and quark/gluon TMD Fragmentation
Functions. This new resummation technique can be applied as well to the evolution kernel of the
complete hadronic tensor M̃ (built with two TMDs).
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