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1. Introduction

In the description of nucleon structure, transverse moomardependent parton distribution
functions [1] (TMDs) play a role complementary to genemdizparton distributions (GPDs).
Whereas GPDs encode information about the transverseakgairibution of partons (through
Fourier transformation with respect to the momentum transfTMDs contain information about
the transverse momentum distribution of partons. As dedafurther below, the definition of
TMDs involves a number of subtleties not encountered in @se f GPDs, which also must
be taken into account in formulating corresponding lat@@D calculational schemes. Castin a
Lorentz frame in which the nucleon of masg propagates with a large momentum in 3-direction,
P+ = (P°+P%)/v/2 > my, the quark momentum components scale such that TMDs areiprin
pally functions f (x,kr) of the quark longitudinal momentum fraction= k*/P* and the quark
transverse momentum vectar, with the dependence on the comporient= (k® —k3) /v/2 < my
becoming ignorable in this limit.f (x,kr) will thus be regarded as having been integrated over
k~. The TMDs also depend on a collection of further parametdrishwwill be specified below as
needed.

Experimentally, TMDs manifest themselves in angular aswytnies observed in processes
such as semi-inclusive deep inelastic scattering (SIDhg)tae Drell-Yan (DY) process. Corre-
sponding signatures have emerged at COMPASS, HERMES ahd2+t4], and that has motivated
targeting a significant part of the physics program at fuexperiments in this direction, e.g., at
the upgraded JLab 12 GeV facility and at the proposed eledtno collider (EIC). To relate the
experimental signature to the nucleon structure encodddvibs, a suitable factorization frame-
work is required. One possible such framework which is paféirly well-suited for connecting
phenomenology to a lattice QCD calculation has been addaimcgs—8]. Factorization in the
TMD context is considerably more involved than standardireedr factorization, with the result-
ing TMDs in general being process-dependent, via initidlanfinal state interactions between the
struck quark and the nucleon remnant.

The main thrust of the present work lies in casting the phesraiogical definition of TMDs
into a form amenable to evaluation within lattice QCD, anesgnting exploratory results for se-
lected TMD observables. This is facilitated by writing theflamental TMD correlator introduced
below in terms of invariant amplitudes, so that the problem loe transformed to a Lorentz frame
in which rotation to Euclidean lattice time becomes simpeparticular, time-reversal odd (T-odd)
observables such as the Sivers and Boer-Mulders shiftseitliscussed. A detailed account of
this work was presented in [9].

2. Definition of TMD observables

The fundamental correlator defining TMDs is of the form

d?br d(b-P) . ol (bPS..)
r] — . _ . unsubtr.
dJF(x,kT,RS...)_/(Zn)Z G ©Px(b-P) —ibr k) j(bz’m) » 2.1)
with N 1

Plnsuon(D-PS ) = (RS GO) F #[0.....b] q(b) IR (2.2)
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whereSdenotes the spin of the nucleon dndtands for an arbitrary-matrix structure. Heuristi-
cally, the Fourier-transformed bilocal quark bilinear cgger counts quarks of momentukrin the
nucleon state, witl controlling the specific spinor components involved. Hogregauge invari-
ance additionally enforces the introduction of the gaugeneation%/, the precise path of which
is not specified at this point; its choice will be guided by piysical process under consideration.
In turn, the presence & introduces divergences additional to the wave functioomelizations
of the quark operators (this is indicated by the subscripstbtr.”); these divergences accordingly
must be compensated by the additional “soft factef’ Here,.# does not need to be specified in
detail, since only appropriate ratios in which the soft dastcancel will ultimately be considered.
Finally, [ (x,kr,P,S...) is, as noted further above, a function only of the three quasknentum
components contained mandkr, whereas the small componedt is integrated over; thus, in its
Fourier transform, the conjugate componbntis set to zero, as written in (2.1).

Decomposing the correlatap"! (x,kr,P, S ...) into the relevant Lorentz structures yields the
TMDs as coefficient functions. At leading twist,

oVl — f,— |8KS L 2.3)
mN odd
ke -
OV = Agy+ TmNST arr (2.4)
o 2kki —K23))S . . Ak &iik;
(D[IU+V5] — Sh ( J TH) JhJ_ _hJ_ #hj_ 25
Shy+ 2, 1T+mN 1L+ my » (2.5)

whereA denotes the nucleon helicity (i.65] = AP™/my, S~ = —Amy/2PT). In particular, the
two TMDs fi; andh; are odd under time reversal. Nonvanishing effects in thésamels can
only occur if a mechanism is operative which breaks timesrsal invariance. The former TMD,
characterizing the unpolarized distribution of quarks itransversely polarized nucleon, is the
Sivers function, whereas the latter TMD, characterizing distribution of transversely polarized
guarks in an unpolarized nucleon, is the Boer-Mulders fonct

Up to this point, no reference has been made to a physica¢gsoghich may be parametrized
by the TMDs. However, the usefulness of a definition of TMDsadsatingent upon such a connec-
tion being possible. This requires a factorization framewwehich allows one to separate the de-
scription of the physical process into the hard, pertuvieatertex, a TMD encoding the structure of
the nucleon, and further components such as fragmentatiations describing the hadronization
of the struck quark. In general, the possibility of a factation of this kind is not guaranteed [10].
However, for certain processes, including semi-inclusigep inelastic scattering (SIDIS) and the
Drell-Yan (DY) process, factorization arguments have atldeen constructed, one possible ap-
proach having been advanced, e.g., in [5-8]. Fig. 1 scheallgtiexhibits the principal elements
involved in a description of SIDIS. One particularly notetiny aspect is the final-state gluon ex-
changes between the struck quark and the nucleon remnaaseTimal state effects break time-
reversal invariance and thus lead to nontrivial T-odd TMBs$a formal level, a resummation of
these gluon exchanges in the spirit of an eikonal approximatields a Wilson line approximately
following the trajectory of the struck quark, close to thghli cone. This motivates a specific choice
for the gauge connection between the quark operators if. (Rl@mely, parallel Wilson lines are
attached to both of the quark operators, extending to laigjarttes along a directionclose to the
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Figure 1: lllustration of the elements of SIDIS factorization. Thevkr shaded bubble represents the struc-
ture parametrized by TMDs.

light cone; at the far end, these lines are connected by a¥iise in theb direction to maintain
gauge invariance. The result is a staple-shaped conne®t{Onv, nv+ b, b], where the path links
the positions in the argument @f with straight line segments, amdparametrizes the length of the
staple. Formally, thus, it is the introduction of the adafithl vectorv which breaks the symmetry
under time reversal and makes nonvanishing Sivers and Bakters effects possible.

At first sight, the most convenient choice for the stapledios v would seem to be a light-like
vector. However, beyond tree level, this introduces rapidivergences which require regulariza-
tion. One advantageous way to accomplish this is to takbightly off the light cone into the
space-like region [5, 6], with perturbative evolution efijolas governing the approach to the light
cone [7]. Within this scheme, a “maodified universality” haseh established, i.e., common TMDs
describing both SIDIS and DY, except that in the DY process, initial state interactions which
play a crucial role; correspondingly, the staple directiosinverted and the T-odd TMDs acquire a
minus sign. A scheme in whioch(along with the quark operator separations generically space-
like is also attractive from the point of view of lattice QCBs discussed further below. It will
thus constitute the starting point for the development efl#ittice calculation. A useful parameter
characterizing how closeis to the light cone is the Collins-Soper evolution paramete

g vP (2.6)

VI[P ”
in terms of which the light cone is approached for—» 0o,
The correlator (2.2) can be decomposed in terms of invadarlitudesAjg. Listing only the
leading twist components,

1 - o N
ﬁq’tﬂubm = Ao +imné&ijbiSjA1B (2.7)
1 zivy) Y X
ﬁcbunsubtr. = —NAsg +i[(b-P)A—mn(br - Sr)]A7s (2.8)
1 gl

ﬁ‘bunsubtr, = imn&;jbjAus — SAg — imnAb A + my[(b-P)A —my(br - Sr)lbiAus . (2.9)

These amplitudes are useful in that they can be evaluatedyidesired Lorentz frame; they will
thus facilitate casting the problem in a frame which is paitrly suited for the lattice calculation.
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On the other hand, in view of (2.3)-(2.5), they are clearlysely related to Fourier-transformed
TMDs. Performing the corresponding algebra, and quotinly tme components necessary for
defining the Sivers and Boer-Mulders shifts below,

fIOW2 7, nv-P) = 2Ags(—b2,b-P=0,{,nv-P)/.Z(12,...) (2.10)
fliW w2 ... ,nv-P) = —2A18(—b2,b-P=0,,nv-P)/.7(K?,...) (2.11)
A Y (62.2,....nv-P) = 2As(—b},b-P=0,{,nv-P) /7 (K?,..) (2.12)
where the generic Fourier-transformed TMD is defined as
. 2 n .1 .
FUOW2,. ) =nt (—2 0 / dx/dsze'bT'kT FxK2,...) . (2.13)
g -1

The bt — 0 limit formally yields kr-moments of TMDs. However, this limit contains additional
singularities, which one can view as being regulated by defimi. Here, results will only be
given at finitebr. Note the presence of the soft factoss on the right-hand sides of (2.10)-
(2.12). One can construct observables in which the sofofactancel by normalizing the (Fourier-
transformed) Sivers and Boer-Mulders functions (2.11) @t2) by the unpolarized TMD (2.10),
which essentially counts the number of valence quarks. ,Ténes defines the “generalized Sivers
shift” L) B R

flT (b%,) AlzB(—b%,O,Z,nv-P)

5 BT T S L SRRt N > .
(ky)ru(bF,...) =My f}l]m)(b%,---) ™ KzB(—b-zr,O,ZJ’V' P) 240

which is the regularized, finiter generalization of the “Sivers shift”

™ fEt®o,..)  fdxS dkr kyd (x ke, St = (1,0))

f[l]( )(07) N defdsz (D[Yﬂ(x’ kr,Sr = (1’0)) ’ (2.19)

which, in view of the right-hand side, formally represerte average transverse momentum of
unpolarized (U”) quarks orthogonal to the transversd ) spin of the nucleon, normalized to the
corresponding number of valence quarks. In the interpogtadf (2.15), it should be noted that the
numerator sums over the contributions from quarks and aatic, whereas the denominator con-
tains the difference between quark and antiquark contabsi thus giving the number of valence
quarks. Analogously, one can also extract the generalizezt-Blulders shift

N&B(_b%UO?Z?nV' P)
AZB(_b%WO)Z?r’V' P)
Note that the ratios (2.14) and (2.16), besides cancelifigfactors, also cancerl-independent

multiplicative wave function renormalization constantsaehed to the quark operators in (2.2) at
finite physical separatioh.

(k)uT(P%,...) =m (2.16)

3. Lattice evaluation and results

The formal framework laid out above provides all the necgsstements for a lattice QCD
evaluation of generalized shifts such as (2.14) and (2.7®)e path towards these observables
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proceeds via the calculation of nucleon matrix elementheftype (2.2) and subsequent decom-
position into invariant amplitudes, as given in (2.7)-§2.Bor this to be possible, it is crucial to be
working in a framework where the four-vectdsgandv are generically space-like, since straightfor-
ward application of lattice QCD methods requires the operat which one takes matrix elements
to be defined at a single time: In essence, one places a soudce sink with the quantum num-
bers of the nucleon at positions on the Euclidean latticeelyideparated in Euclidean time; then
Euclidean time evolution generateb@na fidenucleon ground state at intermediate times well sep-
arated from source and sink due to exponential decay ofezksifate contributions. In this region,
one can evaluate nucleon ground state matrix elements. Wowais use of the Euclidean time
direction precludes the straightforward treatment of epms containing Minkowski time separa-
tions. Only if bothb andv are space-like is there no obstacle to boosting the prolesribrentz
frame in whichb andv are purely spatial, and evaluatir@ﬂsubtr_ in that frame. Moreover, the
results extracted for the invariant amplitud@g are immediately valid also in the original frame in
which (2.2) was initially defined, thus completing the detaration of quantities of the type (2.14)
and (2.16).

Since, in a numerical lattice calculation, the staple extemecessarily remains finite, two
extrapolations must be performed from the generated datagly, the one to infinite staple length,
n — oo, and the extrapolation of the staple direction towards ittt Icone,f — o0, As shown be-
low, the former extrapolation is under control for a rang@afameters used in this work, whereas
the latter extrapolation presents a formidable challefigee main limitation in this respect is the
set of nucleon momenfaccessible with sufficient statistical accuracy. In théofeing, only data
for the isovectoru — d quark combination will be shown, since in this channel, dmgs of the
operator insertion to disconnected quark loops in the muckancel. Such disconnected contri-
butions have not been evaluated. Calculations were peerom three MILC 2+1-flavor gauge
ensembles [11] with a lattice spacingasf 0.12fm, corresponding to pion massag = 369 MeV
andm,; = 518 MeV, with two lattice sizes used in the former case® 264 and 28 x 64. For
m,; = 518 MeV, the lattice size is 30< 64. The heavier pion mass ensemble, fraught with less
statistical uncertainty, provides the Iargésvalue, namelyf =0.78.

Figs. 2 and 3 show representative results for the genedatireers and Boer-Mulders shifts
(2.14) and (2.16). Fig. 2 (left) displays the dependencdefSivers shift on the staple extent for
a given quark separatioor and a given staple direction characterizedfbyThe T-odd behavior
of this observable is evident, with — o« corresponding to the SIDIS limit, wheregs— —oo
yields the DY limit. The data level off to approach clearlgidifiable, stable plateaux as the staple
length grows. The limiting SIDIS and DY values, represeritgdhe open symbols, are extracted
by imposing antisymmetry im, allowing one to appropriately average the— +o plateau val-
ues. Fig. 2 (right) summarizes the results in the SIDIS lifmitdifferent by at a givenZ, where
the shaded area belollur| ~ 0.25fm indicates the region where the results may be significan
affected by finite lattice cutoff effects.

Fig. 3 summarizes the dependence of the Sivers and Boerevdudthifts on the Collins-Soper
evolution parametef, for all three ensembles considered. The quark separdtidrns kept fixed.
Note that the relevant data in the left-hand panel, disptayhe Sivers shift, are represented by
the full symbols; the empty symbols correspond to a certaitigd contribution to the Sivers shift
which will not be discussed further here; for details, cfl. [9he signal for the shifts quickly
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Figure 2: Dependence of the generalized Sivers shift on the stapdmeieft) and on the quark separation
br inthen — o SIDIS limit (right); from [9].
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Figure 3: Results for Sivers and Boer-Mulders shifts as a functioa &r all ensembles; from [9].

deteriorates as the nucleon momentapand thusZ, is increased. No clear trend can be identified
at the present level of accuracy ésrises, and connecting with perturbative evolution equnstio
at Iargef will clearly represent the most difficult challenge for theegent approach. Within the
(sizeable) uncertainties, no significant variation caniseeined as one changes the pion mass or
the spatial extent of the lattice. In the isovector flavorrote displayed, the signal for the Sivers
shift is of higher quality than the one for the Boer-Muldelnifts One reason for this is that, if one
separates tha- andd-quark contributions, the Sivers shifts in the two casesoam@pposite sign
(thus reinforcing each other in the— d difference), whereas the Boer-Mulders shifts are of the
same sign, thus canceling each other to some extent. Itgheulemarked that the lattice results
obtained in this work are compatible with phenomenologazlyses of experimental SIDIS data
[12,13], in spite of the variety of systematic effects whiehuld still need to be taken into account
for a fully quantitative comparison.

4. Summary and outlook

This exploratory study of TMDs within lattice QCD, employgistaple-shaped gauge connec-
tions to incorporate final/initial state effects (for SIDLY), has provided first results for T-odd
Sivers and Boer-Mulders observables. Both of the corredipgnTMDs are sizeable and negative
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in the isovectoru — d quark case. To cancel soft factors and multiplicative revadization con-
stants, appropriate ratios of Fourier-transformed TMRe(feralized shifts”, cf. (2.14) and (2.16))
were constructed. The staple directiowas taken to be generically space-like, with the light-cone
limit to be approached by extrapolation in the CoIIins-S’qmrameterZ . This extrapolation has
to be performed in addition to the one to infinite staple etsten While the latter extrapolation is
under control for a range of parameters considered in thi&vthe IimitZ — oo Clearly presents a
formidable challenge for the approach presented here. Wishin mind, the Boer-Mulders func-
tion of the pion is presently being investigated. Both the@domass of the pion compared with
the one of the nucleon (note that the hadron mass enters tizendeator off in (2.6)), as well
as the reduced statistical fluctuations of pion correlapesmitting the treatment of higher hadron
momenta, are expected to aid in accessing lattice datamwﬁg
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