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Recent sum rule determinations|dfs|, employing flavor-breaking combinations of hadromic
decay data, are significantly lower than either expectatlmased on 3-family unitarity or deter-
minations fromK,3 andl" [K,;»] /T [11,2]. We use lattice data to investigate the accuracy/reltgbili
of the OPE representation of the flavor-breaking correlatonbination entering the decay
analyses. The behavior of an alternate correlator combmatonstructed to reduce problems
associated with the slow convergence offthe: 2 OPE series, and entering an alternate sum rule
requiring both electroproduction cross-section and haidro decay data, is also investigated.
Preliminary updates of both analyses, with the lessonséebfrom the lattice data in mind, are
also presented.
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Lattice input on the decay determination ofyyY K. Maltman

1. Background

The determination ofV,s| from analyses of flavor-breaking (FB) combinations of hadranic
decay data[]1[] 2] proceeds via finite energy sum rules (FESRs);igalhe

1
/w = g . WENE©ds, (1.1)

the [Vys| determination involving the FB differendd1, = [I‘I\(,O:,i)ud -~ I‘I\(,Ojj;)us} , with I'I\(//)A”( s)
the spind = 0,1 components of the fIavd>'[ vector (V) or axial vector (A) current-current 2-point
functions. The spectral functlon,sx\,/AIJ of I'I\(//)A”( s), and hence thaf\p;, of A, are related to
the normalized differential distributiondR, /;ij /ds of flavorij V- or A-current-induced decay

widths,Ry /aij = T[T~ — vrhadrong ai; (v)]/T [T~ — vee ve(y)], by [@]

ARy /ij
IR _ v P [we (9050 (5w (9 9] a2)

with we (s), wi (s) andcEW all known, andvij the flavorij CKM matrix element. WithVyq| from
other sources)\p; () is expressible in terms of experimental data &ngd|. [Vus| is then obtained
by using the OPE foAll; on the RHS and data on the LHS of Ef.|1.1).

The use of FESRs involving the= 0+ 1 combinationAll; is necessitated by the very bad
behavior of the integrated = 0, D = 2 OPE series at scales kinematically accessible de-
cay [4]. Fortunately, the dominant sudR,q,us/dscontributions are from therandK poles, whose
strengths are accurately known. The remaining O contributions, which are doubly chirally
suppressed, are obtainable phenomenologidgllf] [5, 6]. WithO contributions subtracted from
dRygus/ds one obtalnsp\,/A ud, us(S), allowing the LHS of Eq.nl) to be formed for amys) and

S. Defining the re-weighted = 0+ 1 spectral integralR‘\",’JrA;ij (s0) = /5P dsw(s) dl%,oj,i” (s)/ds
RV (%) :
Vid = \/ R, o)/ | 5933,5%0)} , 13
wheredR, A(S0) = wm“’z %) F{J’Vf\j‘“fz . [Vus| should be independent @f(s) andsy, providing

tests of the rellablllty of the OPE treatment and input data employed. Recenndettons [§],

which yield [Vyg ~ 30 lower than 3-family-unitarity expectatiohsshow non-trivialw(s)- and

Sp-dependence, suggesting shortcomings in the experimental data an@oe@Bsentation.
Quantifying the OPE uncertainty and, from this, the theoretical erra¥@f is complicated

by the slow convergence, at the correlator level, of the leabing2 OPE seriesAll ]OPE To

four loops, witha = as(Q?)/m, andas(Q?), ms(Q?) the running coupling and strange quark mass

in theMSscheme, and neglectimg, 4 relative toms, one has, from Ref[]8]

]OPE 3 my(@?)

7_ B
(AN (Q?) Tl e L 199332 + 208753 + dga* + | . (1.4)

1A recent update of the kinematic weighg,= m? analysis, e.g., quotes the resiis| = 0.217320)exp(10)tn [ﬂ].
2We use the estimaty = 2378 of Ref. [p] for the at-present-unknown 5-loop coefficignt
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Sincea(m?) ~ 0.1, convergence at the spacelike point on the corjger sy is marginal at best, and
conventional error estimates may significantly underestimat® ta€ truncation uncertainty. The
alternate fixed-order (FOPT) and contour-improved (CIPT) scheorethé truncated integrated
series, e.g., despite differing only by contributions beyond the common truncatider,oyield
IVus| whose difference not only significantly exceeds such estimates, betses steadily (from
~ 0.0010 to~ 0.0020) as one moves from 3- to 5-loop truncation.

With problems in the FR\M; FESRs due, to at least some extent, to dlbw 2 OPE conver-
gence, FESRs having reducded= 2 OPE contributions at the correlator level are highly desirable.
In Ref. [I1], FB combinations oﬂ\(/o/ﬁ&d, My aus @nd the EM correlatoiflgy, (whose spectral
function, pgw, is determined by the basg e~ — hadronscross-sections) were constructed having
vanishing leadin@(a?) D = 2 OPE contributions. The unique such combination in Wlﬁl{; T

A,us
appears with the same normalization adlm; is
Al em = 9Mem — Gn\(,c?jdl) +AMN; (1.5)
whoseD = 2 OPE series is
—3ms[1_ =2 =3
— — |=-a+4.38°“+449a°+---| . 1.6
o2 P [ 38+ + + ] (1.6)

The higher order coefficients in this series are also significantly smallettiioge forAMl;. The
D = 4 series is also, fortuitously, suppressed, the results of R¢f. [10higéaithe form

ms(S9 — my(¢4)
Q4

with (cp,c1,C2) = (—2,—2,—26/3) for A, and (0,8/3,59/3) for Af;gm. The analogue of
Eq. (I.3) for|Vy|, based on th&ll; gu rather thamAlN,; FESR, is thus expected to have a much
smaller OPE contribution, and hence much reduced theoretical uncerthattice data will be
used to check whether or not this expected OPE suppression is reaiped b

chék : (1.7)

2. Lattice vs OPE resultsfor Al and Al gm

The I'I\(/J/)A;ud(Qz) for spacelikeQ? = —qg? > 0 also enter the decomposition of the Euclidean
space V and A 2-point functions, and hence are measurable on the lattleegeport here on
comparisons of OPE expectations for the combinatiifig(Q?) andAr TVEM(QZ) with results ob-
tained onns = 2+ 1 domain wall fermion ensembles withyd = 1.37 GeV andm;; = 171 and
248MeV. Full details of the simulations are given in Rdf][12]. Expanded compasismresults
from finer 1/a= 2.28 GeV, m; = 289, 345 and 39MeV ensembleg[13], will be considered else-
where. Here, by keeping momentum components/ 8™ of the lattice maximumQ? ~ 4.6 GeV?
can be reached. The OPE-lattice comparisons are designed to exptbeeggcuracy of the OPE
representation for differe = 2 truncation orders, (ii) the question of whether the fixed-scale or

3In FOPT, one first integrates with fixed renormalization sggléhen resums logs through the “fixed-scale” choice
U2 = sp; in CIPT logs are instead resummed point by point along the contoureviftegration via the “local-scale”
choiceu? = Q2.
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Figure 1: Lattice data vs. the OPE fax1,(Q?)

local-scale representation best describethdependence of the lattice data, and (iii) whether the
data bears out the strong suppressiofidf gy relative toArl; suggested by the truncated OPE
representations. Since results foy = 171 248 MeV are qualitatively identical, we show results
for the former only.

We begin with the lattice-OPE comparison for the case where the doninart OPE contri-
bution is evaluated using the local-scale prescription (the analogue of 8iR EEPT prescription,
used in essentially all FESR,s| determinations in the literature). Fig. 1 shows the OPE results
for 2-, 3-, 4- and 5-loo = 2 truncation. An apparently asymptotic behavior is found for the
integratedD = 2 OPE series, the terms decreasing in magnitude with increasing order until the
smallest term is reached, and increasing in magnitude thereafter. To thefrilgh right-most ver-
tical line, the 4-loop contribution is smallest, and, interpreting the behavioaastth conventional
asymptotic series, 4-loop truncation would be favored. Between the twicaldmes the 3-loop
contribution is smallest, favoring 3-loop truncation, while to the left of the lefstvertical line,
where it is the 2-loop contribution which is smallest, 2-loop truncation is fakore

In Fig. 3, we compare th@?-dependences of the lattice data and OPE representation, the
D = 2 contribution to the latter being truncated at 4-loops and evaluated usindgdualkscale
and fixed-scale prescriptions. For the fixed-scale case, weitise4 GeV2. The lattice data is
evidently represented considerably better by the fixed-scale versimsénuse generates the FOPT
version of the FESR integrals).

Fig.[3 compares the lattice data and OPE representatidsrfe,EM(Qz), with the analogous
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Figure 2: Lattice data vs. the OPE with either fixed-scale or localesearsions of thé = 2 contribution
to AN (Q?)

AN (Q?) results included for comparison. The lattice data clearly confirms the stupmyession

in Al gm relative toAll; suggested by the OPE representation, the numerical extent of the sup-
pression being even greater than suggested by the central OPE remuthu® expects very small
theoretical errors on th®/,¢ obtained from mixed-electroproduction FESRs.

We now perform preliminary updates of th€l; andAlN; gy FESR determinations d¥s|,
taking the lessons provided by the above comparisons into account. ¥tieua/+A 1 data used
are obtained by rescaling the old ALEPH][14] results mode-by-mode fusegjuent changes in
the exclusive branching fractions. The updated branching fractienthase from the unitarity-
constrained HFAG fit incorporating al$Q,» and i, input, discussed in Ref T[L5], further updated
for the B[t — K~ nmPv;] results of Ref.[[16]. For the flavard V and A distributions, we employ
the update of the OPAL distributiop [|18] detailed in R§f][15], further modifig a small common
global V and A rescaling, needed to restore unitarity after inclusion ofeeBir — K—nrv] re-
sults. This interim global rescaling will be replaced by a further-updatedieriny-mode rescaling
once the results of Ref[ [[16] are finalized and can be incorporated iagidhal HFAG branching
function fit. While details of the electroproduction cross-section data emgheifebe given else-
where, we mention that the tension betweemd electroproduction results for ther contribution
to piyi(s) is assumed to be accounted for by the long-distancecEMy mixing effect identified
in Ref. [IT], implying that the rrrrdata is to be used for thert contribution to the\M; gy FESR,
where the effect of this long-distance EM contribution is not accountedrfahe OPE side.
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Figure 3: Lattice data vs. the OPE fd1,(Q?), ANy gm(Q?)

For theAlN; analysis, we employ the 3-lodp = 2 truncation favored by the lattice data. The
results obtained from FESRs involving the kinematic weight,and two other weights used pre-
viously in the literaturé are shown in Fig[]4, for both CIPT and FOPT prescriptions, though it is
the latter which is, in fact, favored. For CIPT, we show results obtaingd)dmth the integrated
correlator and same-order-truncated Adler function forms (the latteinglotéy partial integration
and re-truncation before integration). These again differ only by itutions beyond the common
truncation order. Fosy = m% w = wq, shifting from the 5-loop-truncateld = 2 CIPT+correlator
to the 3-loop-truncated FOPT prescription favored by the lattice data r&geby 0.0017. Sig-
nificantw(s)-dependence, and, far;, significants;-dependence, are evidently present, though the
latter is reduced when FOPT, rather than CIPT, is used for the inteddate?iseries. These effects
produce a contribution to the theoretical systematic uncertainty\ghalready much larger than
the total estimated theoretical uncertainty reported previously in the literature.

Fig.[d shows the results fov,s| obtained fromAlN e FESRs employing a number of weights
used in the earlier literaturf J19,]20]. There are two curves for eaighiy@ne corresponding to an
analysis in which (in keeping with the lattice results) OPE contributions are dreateegligible,
one to an analysis using the 2-loop-truncated version obtke2 OPE series. The results show
much weakeisy- andw(s)-dependence, and are in excellent agreement with the expectations of
3-family unitarity. We emphasize that these results are preliminary, and eefguiher updating

4wyq was constructed to improve integrated= 2 CIPT convergencemlng is a member of the familyw (y) =
1- gy + gipyN constructed to keep higher OPE contributions under contrdl [20].
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Figure4: Vs vs. 5 for thet FB sum rule

once improved versions of the input experimental data become available.
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