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1. Introduction

In the last few years, considerable progress has been made in arstamdling of the infrared
(IR) behavior of the fundamental Green’s functions of QCD, sucHwsng ghost, and quark prop-
agators [1, 2, 3, 4, 5, 6, 7, 8, 9], as well as some of the basic vertiths theory [6, 10, 11, 12],
and their relation to the confinement and dynamical chiral symmetry breaki®g)([8]. In fact,
there is a broad consensus that one of the most important ingredients @88is the non-abelian
quark-gluon vertexwhich controls the way the ghost sector enters into the gap equationif-Spec
ically, this vertex introduces a numerically crucial dependence on the dhessing function and
thequark-ghost scattering amplitud&3]. This latter quantity satisfies its own dynamical equation,
which may be decomposed into individual integral equations for its varmus factors. Here we
will present the first steps towards the determination of the longitudinakeglaon vertex form
factors for a particular kinematic configuration: tigark symmetric limitvhere the incoming and
outgoing quark momenta have the same magnitude and opposite signs. To deetlcainpute
numerically the relevant quark-ghost scattering kernel components ébiie-loop dressed” ap-
proximation, at the same kinematic point, using as ingredients the nonpentarladtice results
for the gluon propagator and ghost dressing function of Ref. [2],tha solution of the quark gap
equation obtained in [13] for the full quark propagator.

2. Ingredients and definitions

Consider the conventional quark gluon vertex shown in Fig. 1, andatkfincording to

iCpg g (0 P2 —P) = IQ83 T (0 P2, —P1); T (GhP2,—P) = Vi A+ pe=p (2.1)
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Figure 1: The conventional quark-gluon vertex with the momenta rautised throughout the text.

In the Batalin-Vilkoviski (BV) formalism, the Slavnov-Taylor identity (STI)tsdied by this
vertex reads (in the kinematic configuration chosen) [5]

AT gy, (0 P2, —P1) = F () [kawi(pl)rw,-cafp;(pz,q, —P1) + T g2 (P2, —pl,q)rw,-wk(pz)] :
(2.2)
In the formula abové (g?) denotes the so-called ghost dressing function which is related to the
full ghost propagatob??(g?) through

a2y sabF (0F) (0) (2 _
iID*(g°) =id T FY (%) =1, (2.3)
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while Iy is the inverse of the full fermion propagat8y(p) obtained by solving the equation
. . . . 1
Si (PN yp, =3 187 (p) =188 (p) =18 (2.4)
The standard decomposition for the inverse of the full quark propagatop) is given by

iS~*(p) =i[A(p?) p—B(p)]. (2.5)

whereA(p?) andB(p?) are, respectively, the Dirac vector and scalar components.

In addition, yy; andy represent the so-called antifields associated to the spinor figldad
Yk respectively; they have ghost charge -1, (mass) dimension 5/2, @ydBuise statistics. The
Green's function$ g2 andl y,cag; are shown in Fig. 2.

These two functions are not independent, being related by “conjugafimtged, to get one
from the other, we need to perform the following operationsexchange- p; with py: —p1 < p2;
(ii) reverse the sign of all external momenta—ps, P2 <+ —0a, p1, —P2; (iii) take the hermitian
conjugate of the resulting amplitude.

Then, introducing the function

Hi?(qv P2, — pl) = gtlaj1 H (q7 P2, _pl) - _irl'lljcaw;;(pz q, _p1)7 (26)
ﬁﬁ (_q7 P, _pZ) = gtlejl ﬁ(_q7 P1, _pZ) = irl,U;ﬂfiCa(pZa — P, q)v

and factoring out a the common color and gauge coupling combingtjprthe STI (2.2) can be
rewritten as

9“T u(a, p2, —p1) = F(6®) [SH(po)H(G, P2, —p1) —H(—0, p1,—p2)S ()], (2.7)

with H obtained fromH through the set of operations detailed above. Hhiinction admits the
general form factor decomposition [14]

H (0, P2, —p1) = Xol + X1 P14+ Xo P2+ X3y P Py, (2.8)

where the form factor¥; are functions of the moment, = X (g2, p3, p3) and G,y = 1/2[yy, W]
(notice thé difference with respect to the conventional definition of this quantity). tbee obtains
automatically the expansion

H(—d, p1,—p2) = Xol + Xz p1+ X1 P2+ X360,y pi P, (2.9)

whereX = Xi(c?, pi, p3).
At tree-level, one clearly haxéo) = YE,O) = 1, with the remaining form factors vanishing.
The most general Lorentz decomposition for the longitudinal part of thexe,, (d, p2, —p1)
appearing in Eq. (2.7) can be written as [14]

M u(a, P2, —p1) = Lavu + La(Pr+ P2) (P14 P2)u + La(Pr+ P2)u + LaOuv (p1+ p2)¥,  (2.10)

whereL; are the form factors, whose dependence on the momenta has beezssegpin order to

q(f) is

keep a compact notatione,, Lj = Li(g?, p2, p3). Notice that the tree level expression ft

recovered setting; =1 andL, =Lz =L4=0; then,l’f,o) = Yu-



Nonperturbative results on the quark-gluon vertex A. C. Aguilar

Ty i (P20, —p1) = = 9ty

= g t?k,

Figure 2: The auxiliary functions through which the STI satisfied by tluark-gluon vertex is satisfied. For
convenience we show the momenta routing matching the kitiesnehosen for the quark-gluon vertex as
well as the tree-level and one-loop terms in the correspanidiop expansion.

Contracting Eq. (2.10) witg, we have

OMT = (PE— P3)Lal + (P — P)Lo+ Lalp + (P — P3)L2 — Lalpo + 2LaGuvPh P3.  (2.11)

In addition, substituting into Eq. (2.7) the full quark propagegot(p) of Eq. (2.5), and the
expressions fo andH given by Egs. (2.8) and (2.9) respectively, we find that the rhs of E¢1)
can be also expressed in terms of the functidnB andX;’s. Then, it is relatively straightforward
to demonstrate that tHg's may be expressed as [13]

L= F(ZQ) {A(PL)[Xo = (PE+ P1- P2)Xa] +A(P2) [Xo — (P3 + P1-P2)X3]}

n @{B (p1) (X2 — X1) + B(p2) (X2 — X1) } ;

Lo = grem b (AP X+ (9 — Pu-pe)e] —A(po) Ko+ (7~ pr-po) X}
- (pFl(pz{B p1) (X1 +X2) — B(p2) (X1 +X2) } ;
Ls = pF 2 {A(p1) (PEX1+ pr-PaXa) — A(P2) (P5X1+ P1-P2X2) — B(p1)Xo + B(p2)Xo} ;
1
Lo = B9 (A (p1)%o - A(p2)Xz — B(pr)Xa + B(p2)Xa}. (2.12)

It is interesting to notice that setting in Eq. (2.28)= Xo = 1 andX; = X; = 0, fori > 1, and
F(q) = 1, we obtain the following expressions

A A A —A B —-B
A I = LR = UL

which give rise to the so-called Ball-Chiu (BC) vertex [15], widely employrethe literature for
studies of CSB [8].
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3. The “one-loop dressed” approximation for H

It is clear from Eq. (2.12), that in order to determine the longitudinal faaotdrsL; , it is
necessary to know the nonperturbative behavior of the form faxtors

To obtain a nonperturbative estimate férand its form factors, we will study the “one-loop
dressed” contribution represented in the diagram of Fig. 3, and given b

aW(q,ps,—p1) = 1 —

Figure 3: The quark-ghost scattering kernel at “one-loop dressegfagpmation.

1.
HIZ( pz,—py) = 1= 51Cag? | AY()Gy (k—a)D(k—Q)S(kc+ P2)Ty(k, P2, —k— 2] (31)

whereCy is the eigenvalue of the Casimir operator in the adjoint representdtiiiq) is the full
gluon propagator; in the Landau gauge

a“q”
2
For evaluating Eq. (3.1) further, we will use the following approximatiofsthé full gluon-

ghost vertex will be replaced by its tree-level valie, iG¢ = —gf2*%(k —q),. Note that, since

the full AV (k) is transverse, only the, part of the gluon-ghost survives sinkg\"V (k) = 0; (ii)
for the vertex ; we will use the following Ansatz

20 (0) = 5% [gw - }A(q» (3.2)

Cu(k p2, —k—p2) = F(zk)[A(szrk)—kA(pz)]y“
F (k) k¢
7@[[A(p2+k)—A(pz)](2V52+k)—2[|3(p2+k)—5(p2)] .(3.3)

Notice that the above Ansatz satisfies the STI of Eq. (2.7) when 1. Again, due to the
transversality ofA,, (k), the second term on the rhs of Eq. (3.3), which is proportional to the
longitudinal momentunk#, does not contribute in the Eq. (3.1).

Then, inserting into Eqg. (3.1) the propagators of Eq. (3.2) and the Afmatize quark-gluon
vertex given by Eq. (3.3), it is straightforward to derive the followingmrssion foH

_g°C
HI (g, p2 —py) = 1+1952 [ # (P, g (2. K. (34)
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where
_ D(k=g)F (K)AK)[A(P2 + k) +A(p2)]
H (Pl = A2(p2+K) (P2 +K)2—B2(p2+ k) (3:9)
while all spinorial structure is included in
(P = A(pe +10 | Bodl+ k-0 pok G| +Bp2 -0 [d-k G| @9)

4. Quark symmetric configuration

The projection of the form factorX;, appearing in the definition (2.8), for arbitrary kine-
matics boils down to a complicated system of several equations. In order ® timakproblem
at hand technically more tractable, we will only compute it in a specific kinemdiél the
quark symmetric limitvhere the quark momenta have the same magnitude and oppositd.signs,
p1=—p/2,p2=p/2andg=—p.

In this kinematical configuration, it is easy to see that only the (Dirac) fawctofL, survives,
and the vertex of Eg. (2.10) simplifies to

Fu(—p,p/2,p/2) =Liyy; where Ly=Ly(p? p?/4,p%/4). (4.1)

In addition, the quark-ghost scattering keraebndH, given by Eq. (2.8) and Eq. (2.9), simplify
in this limit, and the terms proportional fobecome linearly dependent such that

H(p,—p/2,—p/2) = Xol+ (X1 —X2)p/2. (4.2)
Settingps = p2 = p/2 andq = —pin Eq. (3.4), and taking the appropriate traces, it is straight-

forward to derive the following expressions for the form fackgrand the subtractioX, — X; (in
the Euclidean space)

4 9Ca [ D(p+K)F (KAK)A[A2+ Al (p-k)?
RS W = el
92CA/D(p+k)F(k)A(k)BZ[A2+A1] [ > (p-k)z]
2p% Jk A5(p/2+k)?+B3 S

whereA; = A(p/2), A, = A(p/2+Kk), B1 = B(p/2), andB; = B(p/2+ k). Due to the fact that the
momentap; andp, have the same magnitude in this configuration, it is possible to show from the
definition (2.9) thatXo = X andX; — X; = X, — Xj.

Then, it is straightforward to see, from Eq. (2.12), that in the symmetrickdumait L, simpli-
fies to

Xa(p) = X1(p) = (4.3)

L1 =F(p)X%(p)A(p/2) +F(p)[X2(p) — X1(p)|B(P/2) . (4.4)

As we have seen in Eq. (4.3), both form fact¥gsandX, — X; depend on the nonperturbative
form of the four basic Green’s functions, namalq), F(q), A(p) andB(p). Therefore, in order
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Figure 4: The scalar form factoxg (left panel) and the combination of the form fact®gs— X3 (right panel)
in the symmetric quark configuration for( 4?) = g2 /4= 0.30.

to proceed with the numerical analysis, we use/¢q) and F(q) the lattice data obtained by
[2], while for A(p) andB(p) we use the solution of the quark gap equation obtained in Ref [13].
All these functions were renormalized @at= 4.3 GeV, and in all our calculations we have fixed
a(u?) =g?/4m=0.30.

In Fig. 4, we show the numerical results Xy(p) (left panel), andz(p) — X1(p) (right panel).
On the left panel of Fig. 4, we can see th&gt shows a maximum located in the intermediate
momentum region (around-12Ge\?), while in the UV and IR regions the curve goes to its
perturbative valugée. Xy — 1.

On the right panel of Fig. 4 we notice that the combinafion- X; saturates at a finite value
in the deep IR region, while in the UV it vanishes asymptotically.

With all ingredients available, we are now in position to determine the behavibeddirac
form factorL; in the symmetric quark configuration.

In Fig. 5 we show the result fdr; obtained from Eq. (4.4). As we can clearly sk& develops
a sizable plateau in the IR region, and as expected, it recovers its @énanmalue in the deep UV
region.

T T
Form factor - Vertex

Quark symmetric configuration

2 2 2
L,(p",p"/4,p"/4)

0 T T T T
1E-3 0.01 0.1 1 10 100

p’ [GeV?]

Figure 5: Numerical result for the vertex form factdr in the quark symmetric configuration when
a(u?) =0.3.
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5. Conclusions

We have presented the general methodology for determining the longitddiimafactors of
the quark-gluon vertex from the fundamental STI that it satisfies. A kgsedtient in this analysis
is the quark-ghost scattering kernell,and its conjugatél, whose field-theoretic origin and basic
kinematic properties are rather subtle.

The first nonperturbative estimate of the form factors compribiritas been computed using
the “one-loop dressed” approximation of the corresponding integradtemn, under certain rea-
sonable dynamical assumptions. For the purposes of this presentati@vevienhited our analysis
to the particular kinematic limit known as “quark symmetric configuration”, whiclegjirise to
considerable technical simplifications. The Dirac form factor of the ggarkn vertex,L;, has
been obtained in this particular kinematic configuration, and its basic fedtavesbeen studied.
The methodology presented here may be directly extended to arbitrary kineoafigurations,
furnishing valuable information on such a fundamental quantity as the qhaok vertex.
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