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1. Introduction

Quantum Chromodynamics (QCD) – the fundamental theory of strong interaction – exhibits
several symmetry properties. Among others, QCD possesses an exactSU(3)c local gauge symme-
try (the colour symmetry) and an approximate globalU(Nf )R×U(Nf )L symmetry forNf massless
quark flavours (the chiral symmetry). For sufficiently low temperature and density quarks and
gluons are confined into colourless hadrons [i.e.,SU(3)c invariant configurations]. Thus, in the
low-energy region, the chiral symmetry is the one predominantly determining hadronic interac-
tions.

Such interactions are governed not only by the chiral symmetry itself but also by the breaking
patterns of this symmetry. There are two mechanisms of chiral-symmetry breaking: explicit, via
non-vanishing quark masses, and spontaneous, via the so-called quark condensate [1].

The chiral symmetry is isomorphic to theU(Nf )V ×U(Nf )A ≡U(1)V ×SU(Nf )V ×U(1)A×
SU(Nf )A symmetry. Classically, if quark masses are non-vanishing but degenerate, then the sym-
metry is broken explicitly toU(1)V ×SU(Nf )V and for non-degenerate quark masses it is broken
to U(1)V .

As already indicated, chiral symmetry is approximate if quark flavours are massless. In fact,
the symmetry is even exact in the chiral limit – but only classically. At the quantum level, the
U(1)A component of the symmetry is broken spontaneously by the so-called chiral anomaly [2].

Another source of the spontaneous chiral-symmetry breaking is the quark condensate

〈q̄q〉= 〈0|q̄q|0〉 =−iTr lim
y→x+

SF(x,y) (1.1)

whereSF(x,y) denotes the full quark propagator. The condensate breaks the symmetrySU(Nf )V ×
SU(Nf )A to SU(Nf )V with N2

f − 1 less generators in the residual than in the original symmetry
group.

Consequently, the emergence ofN2
f −1 massless pseudoscalar degrees of freedom (Goldstone

bosons) is expected from the Goldstone Theorem [3]. This is indeed observed: e.g., forNf = 2,
pions represent long-established lightest degrees of freedom in QCD. Their mass is, however, not
zero but rather close to∼ 140 MeV due to the explicit breaking of the chiral symmetry, render-
ing them pseudo-Goldstone bosons. ForNf = 3, experimental observations yield five additional
pseudoscalar Goldstone states: four kaons and theη meson. However, experimental data also
demonstrate the existence of an additional pseudoscalar degree of freedom:η ′.

The existence ofη ′ cannot be explained only by the symmetry-breaking patternSU(Nf )V ×
SU(Nf )A →SU(Nf )V but rather requires a broader symmetry-breaking mechanismreadingU(Nf )V
×U(Nf )A → U(Nf )V where the symmetry corresponding to the one-dimensionalU(1)A group is
also broken, both explicitly and spontaneously.U(1)A properties are then related to those ofη ′ –
including the axial anomaly which implies thatη ′ remains massless even in the chiral limit. (For a
review ofη andη ′, see, e.g., Ref. [4] and references therein.)

Note, however, that properties ofη ′ cannot be considered separately from those of theη me-
son: they possess the same quantum numbers and can thereforemix. It is important to understand
the mixing pattern of these two states for at least two reasons: (i) it allows one to study their struc-
tures (relative contributions ofu, d andsquarks) – see below – and, correspondingly, (ii ) it enables
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us to understand the decay patterns ofη andη ′, some of which give us insight into the famous CP
violation in the pseudoscalar sector [4].

The mixing ofη andη ′ mesons can be studied within the realm of the three-flavour Linear
Sigma Model with vector and axial-vector degrees of freedom(extended Linear Sigma Model -
eLSM). The model contains only quarkonia, i.e., ¯qq states [5, 6, 7], rendering it suitable to study
quarkonium mixing in various channels including theη-η ′ one. The physical states are obtained
from mixing of two pure states:ηN ≡ (ūu+ d̄d)/

√
2 andηS≡ s̄s. Thus our approach allows us to

study quarkonium content, as well as the mixing angle, ofη andη ′.
We emphasise, however, that the inclusion of vector and axial-vector degrees of freedom into

our model is necessary and important since (axial-)vectorsinfluence phenomenology in other chan-
nels [6]. Note that glue admixtures toη andη ′ can also be considered along the lines of Ref. [8]
but that will not be of concern in the present article.

This paper is organised as follows. In Sec. 2 we discuss the eLSM Lagrangian; in Sec. 3 we
describe theη-η ′ mixing pattern and in Sec. 4 we present a conclusion and an outlook of our work.

2. The Lagrangian

The globally invariantU(3)L ×U(3)R Lagrangian possesses the following structure [5, 6, 7, 9,
10, 11]:

L = Tr[(DµΦ)†(DµΦ)]−m2
0Tr(Φ†Φ)−λ1[Tr(Φ†Φ)]2−λ2Tr(Φ†Φ)2

− 1
4

Tr(L2
µν +R2

µν)+Tr

[(

m2
1

2
+∆
)

(L2
µ +R2

µ)

]

+Tr[H(Φ+Φ†)]

+c1(detΦ−detΦ†)2+ i
g2

2
(Tr{Lµν [L

µ ,Lν ]}+Tr{Rµν [R
µ ,Rν ]})

+
h1

2
Tr(Φ†Φ)Tr(L2

µ +R2
µ)+h2Tr[|LµΦ|2+ |ΦRµ |2]+2h3Tr(LµΦRµΦ†). (2.1)

The scalar and pseudoscalar states present in Eq. (2.1) are:

Φ =
1√
2









(σN+a0
0)+i(ηN+π0)√

2
a+0 + iπ+ K⋆+

0 + iK+

a−0 + iπ− (σN−a0
0)+i(ηN−π0)√

2
K⋆0

0 + iK0

K⋆−
0 + iK− K̄⋆0

0 + iK̄0 σS+ iηS









(2.2)

The matrices containing vectors and axial-vectors read:

Vµ =
1√
2









ω µ
N+ρµ0
√

2
ρ µ+ K⋆µ+

ρ µ− ω µ
N−ρµ0
√

2
K⋆µ0

K⋆µ− K̄⋆µ0 ωµ
S









, Aµ =
1√
2









f µ
1N+aµ0

1√
2

aµ+
1 Kµ+

1

aµ−
1

f µ
1N−aµ0

1√
2

Kµ0
1

Kµ−
1 K̄µ0

1 f µ
1S









(2.3)

with the right-handed (axial-)vector matrixRµ =Vµ −Aµ and the left-handed (axial-)vector ma-
trix Lµ = Vµ −Aµ . Additionally, DµΦ = ∂ µΦ− ig1(LµΦ−ΦRµ) −ieÃµ [T3,Φ] is the covariant
derivative;Lµν = ∂ µLν − ieÃµ [T3,Lν ]−{∂ ν Lµ −ieÃν [T3,Lµ ]} andRµν = ∂ µRν − ieÃµ [T3,Rν ]−
{

∂ νRµ − ieÃν [T3,Rµ ]
}

are, respectively, the left-handed and right-handed field strength tensors,̃Aµ

3
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is the electromagnetic field,T3 is the third generator of theSU(3) group and the termc1(detΦ−
detΦ†)2 describes theU(1)A anomaly [12].

Explicit breaking of the global symmetry in the (pseudo)scalar channel is described by the
term Tr[H(Φ+Φ†)] and in the (axial-)vector channel by the term Tr

[

∆(L2
µ +R2

µ)
]

whereH =

diag(h0N,h0N,h0S) and∆ = diag(δN,δN,δS) with hN ∼ mu = md, hS ∼ ms, δN ∼ m2
u andδS ∼ m2

s

(isospin symmetry assumed in the non-strange sector).

We assign the field~π to the pion;ηN andηS are assigned, respectively, to the pure non-strange
and the pure strange counterparts of theη and η ′ mesons. The fieldsωµ

N , ~ρ µ , f µ
1N and~aµ

1 are
assigned to theω(782), ρ(770), f1(1285) anda1(1260) mesons, respectively. We also assign the
K fields to the kaons; theωµ

S , f µ
1S andK⋆µ fields correspond to theϕ(1020), f1(1420) andK⋆(892)

mesons, respectively. Assignment of theKµ
1 field is, unfortunately, not as clear since this state can

be assigned either to theK1(1270) or to theK1(1400) resonances [11] but that is of no importance
for the following.

Spontaneous breaking of the chiral symmetry is implementedby considering the respective
non-vanishing vacuum expectation valuesφN andφS of the two scalar isosinglet states present in
our model,σN ≡ (ūu+ d̄d)/

√
2 andσN ≡ s̄s. The relations betweenφN,S and the pion decay

constantfπ as well as the kaon decay constantfK read fπ = φN/Zπ and fK =
(√

2φS+φN

)

/(2ZK)

where fπ = 92.4 MeV and fK = 155.5/
√

2 MeV [13]. The chiral condensatesφN andφS lead to
mixing terms in the Lagrangian (2.1) that need to be removed in order for the scattering matrix
stemming from the Lagrangian to be diagonal (the procedure is described detailedly in Ref. [5]).

3. Mixing of η and η ′

Our Lagrangian (2.1) yields the following mixing term of thepure non-strange and strange
fieldsηN andηS:

LηNηS =−c1
ZηSZπ

2
φ3

NφSηNηS. (3.1)

The full ηN-ηS interaction Lagrangian obtained from Eq. (2.1) has the form

LηNηS, full =
1
2
(∂µηN)

2+
1
2
(∂µηS)

2− 1
2

m2
ηN

ηN
2− 1

2
m2

ηS
ηS

2+zη ηNηS, (3.2)

wherezη is the mixing term of the pure statesηN ≡ (ūu− d̄d)/
√

2 andηS≡ s̄s:

zη =−c1
ZηSZπ

2
φ3

NφS. (3.3)

However, mixing betweenηN andηS can be equivalently expressed as the mixing between the
octet state

η8 =

√

1
6
(ūu+ d̄d−2s̄s)≡

√

1
3

ηN −
√

2
3

ηS (3.4)

and the singlet state

η0 =

√

1
3
(ūu+ d̄d+ s̄s)≡

√

2
3

ηN +

√

1
3

ηS. (3.5)
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We determine the physical statesη andη ′ as mixture of the octet and singlet states with a
mixing angleϕP:

(

η
η ′

)

=

(

cosϕP −sinϕP

sinϕP cosϕP

)(

η8

η0

)

(3.6)

or, using Eqs. (3.4) and (3.5),

(

η
η ′

)

=

(

cosϕP −sinϕP

sinϕP cosϕP

)





√

1
3 −

√

2
3

√

2
3

√

1
3





(

η8

η0

)

. (3.7)

If we introduce arcsin(
√

2/3) = 54.7456◦ ≡ ϕI , then the trigonometric addition formulas lead
to

(

η
η ′

)

=

(

cos(ϕP+ϕI) −sin(ϕP+ϕI)

sin(ϕP+ϕI) cos(ϕP+ϕI)

)(

ηN

ηS

)

. (3.8)

Defining theη-η ′ mixing angleϕη

ϕη =−(ϕP+ϕI), (3.9)

we obtain

(

η
η ′

)

=

(

cosϕη sinϕη

−sinϕη cosϕη

)(

ηN

ηS

)

(3.10)

or in other words

η = cosϕηηN +sinϕηηS, (3.11)

η ′ =−sinϕη ηN +cosϕη ηS. (3.12)

The Lagrangian in Eq. (3.2) contains only pure statesηN andηS. Inverting Eqs. (3.11) and
(3.12)

ηN = cosϕη η −sinϕηη ′, (3.13)

ηS= sinϕη η +cosϕηη ′, (3.14)

we can isolate the relevant part of the Lagrangian (2.1) and determine the parametric form of
theη andη ′ mass terms that read

m2
η = m2

ηN
cos2 ϕη +m2

ηS
sin2ϕη −zη sin(2ϕη), (3.15)

m2
η ′ = m2

ηN
sin2ϕη +m2

ηS
cos2ϕη +zη sin(2ϕη) (3.16)

where

m2
ηN

= Z2
π

[

m2
0+
(

λ1+
λ2
2

)

φ2
N +λ1φ2

S+c1φ2
Nφ2

S

]

, (3.17)

m2
ηS

= Z2
ηS

[

m2
0+λ1φ2

N +(λ1+λ2)φ2
S +c1

φ4
N
4

]

(3.18)
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are the parametric forms of the pure statesηN andηS. [Note that the determination ofmηN andmηN

and, consequently,mη , mη ′ andϕη requires a fit ofall parameters in the Lagrangian (2.1) that, in
turn, requires much more observables than the above two isosinglet masses. The fit procedure will
be described further below.]

Assigning our fieldsη andη ′ to physical (asymptotic) states requires that the LagrangianLηη ′

does not contain anyη-η ′ mixing terms leading to the condition

zη
!
= (m2

ηS
−m2

ηN
) tan(2ϕη)/2. (3.19)

3.1 Fit Procedure

In order to make statements regardingη-η ′ mixing we first need to determine values of our
model parameters. Lagrangian (2.1) contains 14 parameters: λ1, λ2, c1, h0N, h0S, h1, h2, h3, m2

0,
g1, g2, m1, δN, δS. Parametersh0N andh0S are determined from the extremum condition for the
potential obtained from Eq. (2.1). ParameterδN is set to zero throughout this paper because the
explicit breaking of the chiral symmetry is small in the non-strange quark sector. The other 11 pa-
rameters are calculated from a global fit including 21 observables [7]: fπ , fK , mπ , mK , mη , mη ′, mρ ,
mK⋆ , mωS≡ϕ(1020), mf1S≡ f1(1420), ma1, ma0≡a0(1450), mK⋆

0≡K⋆
0(1430), Γρ→ππ , ΓK⋆→Kπ , Γφ→KK , Γa1→ρπ ,

Γa1→πγ , Γ f1(1420)→K⋆K , Γa0(1450), ΓK⋆
0(1430)→Kπ (data from PDG [13]; since our model currently

implements no isospin-symmetry breaking that would influence the physical hadron masses by the
order of 5%, we have modified error values presented by PDG such that we use the PDG error value
if it is larger than 5% and increase the error to 5% otherwise.) Note that the observables entering
the fit allow us to determine only linear combinationsm2

0+λ1(φ2
N +φ2

S) andm2
1+h1

(

φ2
N +φ2

S

)

/2
rather than parametersm0, m1, λ1 andh1 by themselves. However, it is nonetheless possible to
calculate masses ofη andη ′ as evident from Eqs. (3.15) – (3.18).

In Table 1 we present our best-fit results (that also include values ofmη andmη ′). One of
the conditions entering our fit wasmηN < mηS, i.e., pure non-strange states should be lighter than
pure strange states (for details, see Ref. [7]). As evident from Table 1, under the constraintmηN <

mηS our fit optimises atmη = (509.4± 3.0) MeV, below the experimentally determined interval
(presented in the third column of Fig. 1). However, the valuemη ′ = (962.5±5.6) MeV is within
the experimental boundaries. Note that the stated values ofmη andmη ′ also implymηN ≃ 766 MeV
andmηN ≃ 770 MeV – the non-strange and strange mass contributions toη andη ′ thus appear to
be virtually equal. Furthermore, the mentioned non-saturation of physicalη and η ′ masses in
our quarkonium-based approach may hint to additional contributions toη /η ′ spectroscopic wave
functions that go beyond the antiquark-quark structure.

Our fit determined all parameter values uniquely and therefore theη-η ′ mixing angle is also
uniquely determined as

ϕη =−44.6◦. (3.20)

The result is close to maximal mixing, i.e., our result suggests a slightly larger mixing than
results of Ref. [14].

4. Conclusions

We have presented an extended Linear Sigma Model containingvector and axial-vector de-

6
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Observable Fit [MeV] Experiment [MeV]

fπ 96.3±0.7 92.2±4.6

fK 106.9±0.6 110.4±5.5

mπ 141.0±5.8 137.3±6.9

mK 485.6±3.0 495.6±24.8

mη 509.4±3.0 547.9±27.4

mη ′ 962.5±5.6 957.8±47.9

mρ 783.1±7.0 775.5±38.8

mK⋆ 885.1±6.3 893.8±44.7

mφ 975.1±6.4 1019.5±51.0

ma1 1186±6 1230±62

mf1(1420) 1372.5±5.3 1426.4±71.3

ma0 1363±1 1474±74

mK⋆
0

1450±1 1425±71

Γρ→ππ 160.9±4.4 149.1±7.4

ΓK⋆→Kπ 44.6±1.9 46.2±2.3

Γφ→K̄K 3.34±0.14 3.54±0.18

Γa1→ρπ 549±43 425±175

Γa1→πγ 0.66±0.01 0.64±0.25

Γ f1(1420)→K⋆K 44.6±39.9 43.9±2.2

Γa0 266±12 265±13

ΓK⋆
0→Kπ 285±12 270±80

Table 1: Best-fit results for masses and decay widths compared with experiment.

grees of freedom (eLSM). A global fit of masses and decay widths has been performed that has
enabled us to study, among others, mixing of isosinglet states in the pseudoscalar channel (η-η ′

mixing). The model presented in this article contains no free parameters – all parameters are fixed
from the mentioned global fit. In theη-η ′ channel, our fit optimises atmη ′ = (962.5±5.6) MeV
andmη = (509.4± 3.0) MeV: the former is exactly within the data interval but the latter is be-
low the experimental result. This may represent a hint of non-q̄q contributions to the pseudoscalar
isosinglets. We have also determined theη-η ′ mixing angle to beϕη =−44.6◦, close to maximal
mixing.

We emphasise, however, that the stated results present onlya small part of the abundant meson
phenomenology that can be considered within eLSM: the modelcan also be utilised to study the
structure of scalar and axial-vector mesons [5, 7, 10, 11] but also extended to finite temperatures
and densities, as outlined in Ref. [15].
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